Natural Image Statistics A Probabilistic Approach to Early Computational Vision /

One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the vis...

Full description

Bibliographic Details
Main Authors: Hyvr̃inen, Aapo. (Author), Hurri, Jarmo. (Author), Hoyer, Patrik O. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2009.
Series:Computational Imaging and Vision, 39
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-491-1
Table of Contents:
  • 1. Introduction
  • Part I Background
  • 2. Linear Filters and Frequency Analysis
  • 3. Outline of the Visual System
  • 4. Multivariate Probability and Statistics
  • Part II Statistics of Linear Features
  • 5. Principal Components and Whitening
  • 6. Sparse Coding and Simple Cells
  • 7. Independent Component Analysis
  • 8. Information-Theoretic Interpretations
  • Part III Nonlinear Features and Dependency of Linear Features
  • 9. Energy Correlation of Linear Features and Normalisation
  • 10. Energy Detectors and Complex Cells
  • 11. Energy Correlations and Topographic Organisation
  • 12. Dependencies of Energy Detectors; Beyond V1
  • 13. Overcomplete and Non-Negative Models
  • 14. Lateral Interactions and Feedback
  • Part IV Time, Colour and Stereo
  • 15. Colour and Stereo Images
  • 16. Temporal Sequences of Natural Images
  • Part V Conclusion
  • 17. Conclusion and Future Prospects
  • Part VI Appendix: Supplementary Mathematical Tools
  • 18. Optimisation Theory and Algorithms
  • 19. Crash Course on Linear Algebra
  • 20. The Discrete Fourier Transform
  • 21. Estimation of Non-Normalised Statistical Models
  • Index
  • References.