Dynamic Models and Control of Biological Systems

Mathematical modeling in the biological sciences is growing exponentially because the general area provides exciting problems from biology to medicine, and this goes under the name mathematical biology. Moreover, models of the growth of microorganisms have become very popular since mathematical pred...

Full description

Bibliographic Details
Main Authors: Rao, Vadrevu Sree Hari. (Author), Rao, Ponnada Raja Sekhara. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-0359-4
LEADER 03439nam a22005175i 4500
001 5621
003 DE-He213
005 20130725192434.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9781441903594  |9 978-1-4419-0359-4 
024 7 # |a 10.1007/978-1-4419-0359-4  |2 doi 
050 # 4 |a QH301-705 
072 # 7 |a PSA  |2 bicssc 
072 # 7 |a SCI086000  |2 bisacsh 
072 # 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 570  |2 23 
100 1 # |a Rao, Vadrevu Sree Hari.  |e author. 
245 1 0 |a Dynamic Models and Control of Biological Systems  |c by Vadrevu Sree Hari Rao, Ponnada Raja Sekhara Rao.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Basic Models -- Chemostat Versus the Lake -- Instability Tendencies -- Self-Regulation -- Wall Growth -- Zones of No Activiation -- Influence of the Control Mechanisms -- Parameter Estimation Using Dynamic Optimization. 
520 # # |a Mathematical modeling in the biological sciences is growing exponentially because the general area provides exciting problems from biology to medicine, and this goes under the name mathematical biology. Moreover, models of the growth of microorganisms have become very popular since mathematical predictions can be tested in the laboratory employing a device known as the chemostat. Such models are called chemostat models. This book attempts to present a self contained account of mathematical model building theory of microbial populations. Key Features: Covers all fundamental concepts and mathematical skills needed to build models for microbial populations. Provides an accessible and informative over view of known literature including several practical techniques. Presents a comprehensive analysis of chemostat models and their limitations in adapting to natural lakes. A thorough discussion on the design of biologically viable control mechanisms (termed bio-control mechanisms) to contain the instability tendencies. Construction of a variety of Lyapunov functionals for global stability analysis. This book is ideal for a general scientific and engineering audience requiring an in-depth exposure to current ideas, methods and models. The topics discussed can serve as a one to two semester course material for senior under graduate and graduate students. It is a useful reference for practitioners, researchers, and professionals in applied mathematics, biology, agriculture, limnology, chemical and civil engineering. 
650 # 0 |a Life sciences. 
650 # 0 |a Biological models. 
650 # 0 |a Microbial ecology. 
650 # 0 |a Ecology. 
650 # 0 |a Biology  |x Mathematics. 
650 1 4 |a Life Sciences. 
650 2 4 |a Systems Biology. 
650 2 4 |a Mathematical Biology in General. 
650 2 4 |a Theoretical Ecology/Statistics. 
650 2 4 |a Community & Population Ecology. 
650 2 4 |a Microbial Ecology. 
700 1 # |a Rao, Ponnada Raja Sekhara.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441903587 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-0359-4 
912 # # |a ZDB-2-SBL 
950 # # |a Biomedical and Life Sciences (Springer-11642)