Causal Analysis in Population Studies Concepts, Methods, Applications /

The central aim of many studies in population research and demography is to explain cause-effect relationships among variables or events. For decades, population scientists have concentrated their efforts on estimating the <U+0018>causes of effects<U+0019> by applying standard cross-sect...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Engelhardt, Henriette. (Editor), Kohler, Hans-Peter. (Editor), F<U+00fc>rnkranz-Prskawetz, Alexia. (Editor)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2009.
Edition:1.
Series:The Springer Series on Demographic Methods and Population Analysis, 23
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-9967-0
LEADER 04708nam a22005415i 4500
001 5369
003 DE-He213
005 20130725191802.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 # # |a 9781402099670  |9 978-1-4020-9967-0 
024 7 # |a 10.1007/978-1-4020-9967-0  |2 doi 
050 # 4 |a HB848-3697 
072 # 7 |a JHBD  |2 bicssc 
072 # 7 |a SOC006000  |2 bisacsh 
082 0 4 |a 304.6  |2 23 
100 1 # |a Engelhardt, Henriette.  |e editor. 
245 1 0 |a Causal Analysis in Population Studies  |b Concepts, Methods, Applications /  |c edited by Henriette Engelhardt, Hans-Peter Kohler, Alexia F<U+00fc>rnkranz-Prskawetz.  |h [electronic resource] : 
250 # # |a 1. 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 # # |a VIII, 252p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a The Springer Series on Demographic Methods and Population Analysis,  |v 23  |x 1389-6784 ; 
505 0 # |a 1: Causal analysis in population studies: H. Engelhardt, H.P. Kohler, A. Prskawetz -- 2: Issues in the estimation of causal effects in population research, with an application to the effects of teenage childbearing: R.A. Moffitt -- 3: Sequential potential outcome models to analyze the effects of fertility on labor market outcomes: M. Lechner -- 4: Structural modelling, exogeneity, and causality: M. Mouchart, F. Russo, G. Wunsch -- 5: Causation as a generative process. The elaboration of an idea for the social sciences and an application to an analysis of an interdependent dynamic social system: H.-P. Blossfeld -- 6: Instrumental variable estimation for duration date: G.E. Bijwaard -- 7: Female labour participation with concurrent demographic processes: an estimation for italy: G. De Santis, A. Di Pino -- 8: New estimates on the effect of parental separation on child health: S.H. Liu, F. Heiland -- 9: Assessing the causal effect of childbearing on household income in Albania: F. Francavilla, A. Mattei -- 10: Causation and its discontents: H. L. Smith. 
520 # # |a The central aim of many studies in population research and demography is to explain cause-effect relationships among variables or events. For decades, population scientists have concentrated their efforts on estimating the <U+0018>causes of effects<U+0019> by applying standard cross-sectional and dynamic regression techniques, with regression coefficients routinely being understood as estimates of causal effects. The standard approach to infer the <U+0018>effects of causes<U+0019> in natural sciences and in psychology is to conduct randomized experiments. In population studies, experimental designs are generally infeasible. In population studies, most research is based on non-experimental designs (observational or survey designs) and rarely on quasi experiments or natural experiments. Using non-experimental designs to infer causal relationships<U+0014>i.e. relationships that can ultimately inform policies or interventions<U+0014>is a complex undertaking. Specifically, treatment effects can be inferred from non-experimental data with a counterfactual approach. In this counterfactual perspective, causal effects are defined as the difference between the potential outcome irrespective of whether or not an individual had received a certain treatment (or experienced a certain cause). The counterfactual approach to estimate effects of causes from quasi-experimental data or from observational studies was first proposed by Rubin in 1974 and further developed by James Heckman and others. This book presents both theoretical contributions and empirical applications of the counterfactual approach to causal inference. 
650 # 0 |a Statistics. 
650 # 0 |a Population. 
650 # 0 |a Social sciences. 
650 # 0 |a Sociology. 
650 # 0 |a Demography. 
650 1 4 |a Social Sciences, general. 
650 2 4 |a Demography. 
650 2 4 |a Sociology. 
650 2 4 |a Population Economics. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Social Sciences, general. 
700 1 # |a Kohler, Hans-Peter.  |e editor. 
700 1 # |a F<U+00fc>rnkranz-Prskawetz, Alexia.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402099663 
830 # 0 |a The Springer Series on Demographic Methods and Population Analysis,  |v 23  |x 1389-6784 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-9967-0 
912 # # |a ZDB-2-SHU 
950 # # |a Humanities, Social Sciences and Law (Springer-11648)