Bilinear Control Systems Matrices in Action /

A control system is called bilinear if it is described by linear differential equations in which the control inputs appear as coefficients. The study of bilinear control systems began in the 1960s and has since developed into a fascinating field, vital for the solution of many challenging practical...

Full description

Bibliographic Details
Main Author: Elliott, David. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2009.
Series:Applied Mathematical Sciences, 169
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1023/b101451
LEADER 03120nam a22004455i 4500
001 5282
003 DE-He213
005 20130725192151.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 # # |a 9781402096136  |9 978-1-4020-9613-6 
024 7 # |a 10.1023/b101451  |2 doi 
100 1 # |a Elliott, David.  |e author. 
245 1 0 |a Bilinear Control Systems  |b Matrices in Action /  |c by David Elliott.  |h [electronic resource] : 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 # # |a X, 281p. 8 illus., 2 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Mathematical Sciences,  |v 169  |x 0066-5452 ; 
505 0 # |a 1. Introduction -- 2. Lie Algebras, Lie Groups -- 3. Systems in Drift -- 4. Discrete Time Bilinear Systems -- 5. Systems with Outputs -- 6. Examples -- 7. Linearization -- 8. Input Structures -- A. Matrix Algebra -- B. Lie Algebras and Groups -- C. Algebraic Geometry -- D. Transitive Lie Algebras -- References -- Index. 
520 # # |a A control system is called bilinear if it is described by linear differential equations in which the control inputs appear as coefficients. The study of bilinear control systems began in the 1960s and has since developed into a fascinating field, vital for the solution of many challenging practical control problems. Its methods and applications cross inter-disciplinary boundaries, proving useful in areas as diverse as spin control in quantum physics and the study of Lie semigroups. The first half of the book is based upon matrix analysis, introducing Lie algebras and the Campbell-Baker-Hausdorff Theorem. Individual chapters are dedicated to topics such as discrete-time systems, observability and realization, examples from science and engineering, linearization of nonlinear systems, and input-output analysis. Written by one of the leading researchers in the field in a clear and comprehensible manner and laden with proofs, exercises and Mathematica scripts, this involving text will be a vital and thorough introduction to the subject for first-year graduate students of control theory. It will also be of great value to academics and researchers with an interest in matrix analysis, Lie algebra, and semigroups. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra  |x Data processing. 
650 # 0 |a Matrix theory. 
650 # 0 |a Topological Groups. 
650 # 0 |a Systems theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402096129 
830 # 0 |a Applied Mathematical Sciences,  |v 169  |x 0066-5452 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1023/b101451 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)