Contextual Approach to Quantum Formalism

The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physic...

Full description

Bibliographic Details
Main Author: Khrennikov, Andrei. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2009.
Series:Fundamental Theories of Physics ; 160
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-9593-1
LEADER 03054nam a22004695i 4500
001 5274
003 DE-He213
005 20130725191841.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 # # |a 9781402095931  |9 978-1-4020-9593-1 
024 7 # |a 10.1007/978-1-4020-9593-1  |2 doi 
100 1 # |a Khrennikov, Andrei.  |e author. 
245 1 0 |a Contextual Approach to Quantum Formalism  |c by Andrei Khrennikov.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Fundamental Theories of Physics ;  |v 160 
520 # # |a The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell s inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems: the impossibility to establish a finer description of micro-phenomena than provided by quantum mechanics; and, in particular, the commonly accepted consequences of Bell s theorem (including quantum non-locality). Also, possible applications of the contextual probabilistic model and its quantum-like representation in complex Hilbert spaces in other fields (e.g. in cognitive science and psychology) are discussed. 
650 # 0 |a Physics. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 # 0 |a Quantum computing. 
650 # 0 |a Statistical physics. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantum Computing, Information and Physics. 
650 2 4 |a Statistical Physics. 
650 2 4 |a Mathematical and Computational Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402095924 
830 # 0 |a Fundamental Theories of Physics ;  |v 160 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-9593-1 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)