Optimization with PDE Constraints

This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically rel...

Full description

Bibliographic Details
Main Authors: Hinze, Michael. (Author), Pinnau, Rene. (Author), Ulbrich, Michael. (Author), Ulbrich, Stefan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2009.
Series:Mathematical Modelling: Theory and Applications, 23
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-8839-1
LEADER 03168nam a22005415i 4500
001 5076
003 DE-He213
005 20130725190023.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 # # |a 9781402088391  |9 978-1-4020-8839-1 
024 7 # |a 10.1007/978-1-4020-8839-1  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Hinze, Michael.  |e author. 
245 1 0 |a Optimization with PDE Constraints  |c by Michael Hinze, Rene Pinnau, Michael Ulbrich, Stefan Ulbrich.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Mathematical Modelling: Theory and Applications,  |v 23  |x 1386-2960 ; 
505 0 # |a Acknowledgements -- 1 Analytical Background and Optimality Theory -- 2 Optimization Methods in Banach Spaces -- 3 Discrete concepts -- 4 Applications -- References. 
520 # # |a This book presents a modern introduction of pde constrained optimization. It provides a precise functional analytic treatment via optimality conditions and a state-of-the-art, non-smooth algorithmical framework. Furthermore, new structure-exploiting discrete concepts and large scale, practically relevant applications are presented. The main focus is on the algorithmical and numerical treatment of pde constrained optimization problems on the infinite dimensional level. A particular emphasis is on simple constraints, such as pointwise bounds on controls and states. For these practically important situations, tailored Newton- and SQP-type solution algorithms are proposed and a general convergence framework is developed. This is complemented with the numerical analysis of structure-preserving Galerkin schemes for optimization problems with elliptic and parabolic equations. Finally, along with the optimization of semiconductor devices and the optimization of glass cooling processes, two challenging applications of pde constrained optimization are presented. They demonstrate the scope of this emerging research field for future engineering applications. 
650 # 0 |a Mathematics. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Numerical Analysis. 
700 1 # |a Pinnau, Rene.  |e author. 
700 1 # |a Ulbrich, Michael.  |e author. 
700 1 # |a Ulbrich, Stefan.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781402088384 
830 # 0 |a Mathematical Modelling: Theory and Applications,  |v 23  |x 1386-2960 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4020-8839-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)