Delay Compensation for Nonlinear, Adaptive, and PDE Systems

Some of the most common dynamic phenomena that arise in engineering practice<U+0014>actuator and sensor delays<U+0014>fall outside the scope of standard finite-dimensional system theory. The first attempt at infinite-dimensional feedback design in the field of control systems<U+0014&g...

Full description

Bibliographic Details
Main Author: Krstic, Miroslav. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2009.
Series:Systems & Control: Foundations & Applications
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4877-0
Table of Contents:
  • Preface
  • Introduction
  • Part I. Linear Delay-ODE Cascades
  • Basic Predictor Feedback
  • Predictor Observers
  • Inverse Optimal Redesign
  • Robustness to Delay Mismatch
  • Time-Varying Delay
  • Part II. Adaptive Control
  • Delay-Adaptive Full-State Predictor Feedback
  • Delay-Adaptive Predictor with Estimation of Actuator State
  • Trajectory Tracking Under Unknown Delay and ODE Parameters
  • Part III. Nonlinear Systems
  • Nonlinear Predictor Feedback
  • Forward-Complete Systems
  • Strict- Feedforward Systems
  • Linearizable Strict-Feedforward Systems
  • Part IV. PDE-ODE Cascades
  • ODEs with General Transport-Like Actuator Dynamics
  • ODEs with Heat PDE Actuator Dynamics
  • ODEs with Wave PDE Actuator Dynamics
  • Observers for ODEs Involving PDE Sensor and Actuator Dynamics
  • Part V. Delay-PDE and PDE-PDE Cascades
  • Unstable Reaction-Diffusion PDE with Input Delay
  • Antistable Wave PDE with Input Delay
  • Other PDE-PDE Cascades
  • Appendices
  • Poincar,̌ Agmon, and Other Basic Inequalities
  • Input-Output Lemmas for LTI and LTV Systems
  • Lyapunov Stability and ISS for Nonlinear ODEs
  • Bessel Functions
  • Parameter Projection
  • Strict-Feedforward Systems: A General Design
  • Strict-Feedforward Systems: A Linearizable Class
  • Strict-Feedforward Systems: Not Linearizable
  • References
  • Index.