Stochastic Models, Information Theory, and Lie Groups, Volume 1 Classical Results and Geometric Methods /

The subjects of stochastic processes, information theory, and Lie groups are usually treated separately from each other. This unique two-volume set presents these topics in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellen...

Full description

Bibliographic Details
Main Author: Chirikjian, Gregory S. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2009.
Series:Applied and Numerical Harmonic Analysis
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4803-9
LEADER 04486nam a22005415i 4500
001 4972
003 DE-He213
005 20130725192812.0
007 cr nn 008mamaa
008 100715s2009 xxu| s |||| 0|eng d
020 # # |a 9780817648039  |9 978-0-8176-4803-9 
024 7 # |a 10.1007/978-0-8176-4803-9  |2 doi 
050 # 4 |a T57-57.97 
072 # 7 |a PBW  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Chirikjian, Gregory S.  |e author. 
245 1 0 |a Stochastic Models, Information Theory, and Lie Groups, Volume 1  |b Classical Results and Geometric Methods /  |c by Gregory S. Chirikjian.  |h [electronic resource] : 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2009. 
300 # # |a XXII, 383p. 13 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied and Numerical Harmonic Analysis 
505 0 # |a ANHA Series Preface -- Preface -- Introduction -- Gaussian Distributions and the Heat Equation -- Probability and Information Theory -- Stochastic Differential Equations -- Geometry of Curves and Surfaces -- Differential Forms -- Polytopes and Manifolds -- Stochastic Processes on Manifolds -- Summary -- Appendix: Review of Linear Algebra, Vector Calculus, and Systems Theory -- Index. 
520 # # |a The subjects of stochastic processes, information theory, and Lie groups are usually treated separately from each other. This unique two-volume set presents these topics in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Volume 1 establishes the geometric and statistical foundations required to understand the fundamentals of continuous-time stochastic processes, differential geometry, and the probabilistic foundations of information theory. Volume 2 delves deeper into relationships between these topics, including stochastic geometry, geometric aspects of the theory of communications and coding, multivariate statistical analysis, and error propagation on Lie groups. Key features and topics of Volume 1: * The author reviews stochastic processes and basic differential geometry in an accessible way for applied mathematicians, scientists, and engineers. * Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry. * The concept of Lie groups as continuous sets of symmetry operations is introduced. * The Fokker<U+0013>Planck Equation for diffusion processes in Euclidean space and on differentiable manifolds is derived in a way that can be understood by nonspecialists. * The concrete presentation style makes it easy for readers to obtain numerical solutions for their own problems; the emphasis is on how to calculate quantities rather than how to prove theorems. * A self-contained appendix provides a comprehensive review of concepts from linear algebra, multivariate calculus, and systems of ordinary differential equations. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. 
650 # 0 |a Mathematics. 
650 # 0 |a Group theory. 
650 # 0 |a Harmonic analysis. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Mathematical physics. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817648022 
830 # 0 |a Applied and Numerical Harmonic Analysis 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4803-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)