The Center and Cyclicity Problems A Computational Algebra Approach /

In the last three decades, advances in methods for investigating polynomial ideals and their varieties have provided new possibilities for approaching two long-standing problems in the theory of differential equations: the Poincar ̌center problem and the cyclicity problem (the problem of bifurcation...

Full description

Bibliographic Details
Main Authors: Shafer, Douglas. (Author), Romanovski, Valery. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4727-8
LEADER 03117nam a22004815i 4500
001 4962
003 DE-He213
005 20130725191742.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780817647278  |9 978-0-8176-4727-8 
024 7 # |a 10.1007/978-0-8176-4727-8  |2 doi 
100 1 # |a Shafer, Douglas.  |e author. 
245 1 4 |a The Center and Cyclicity Problems  |b A Computational Algebra Approach /  |c by Douglas Shafer, Valery Romanovski.  |h [electronic resource] : 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Preface -- Polynomial Ideals and Their Varieties -- Stability and Normal Forms -- The Center Problem -- The Isochronicity and Linearizability Problems -- Invariants of the Rotation Group -- Bifurcations of Limit Cycles and Critical Periods -- References -- Index. 
520 # # |a In the last three decades, advances in methods for investigating polynomial ideals and their varieties have provided new possibilities for approaching two long-standing problems in the theory of differential equations: the Poincar ̌center problem and the cyclicity problem (the problem of bifurcation of limit cycles from singular trajectories). Using a computational algebra approach, this work addresses the center and cyclicity problems as behaviors of dynamical systems and families of polynomial systems. The text first lays the groundwork for computational algebra and gives the main properties of ideals in polynomial rings and their affine varieties; this is followed by a discussion regarding the theory of normal forms and stability of differential equations. The center and cyclicity problems are then explored in detail. The book contains numerous examples, pseudocode displays of all the computational algorithms, historical notes, nearly two hundred exercises, and an extensive bibliography. Completely self-contained, it is thus suitable mainly as a textbook for a graduate course in the subject but also as a reference for researchers. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Field theory (Physics). 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Differential Equations. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Computer science  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
700 1 # |a Romanovski, Valery.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647261 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4727-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)