Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group /

This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier se...

Full description

Bibliographic Details
Main Author: Krantz, Steven G. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Birkhũser Boston, 2009.
Edition:1.
Series:Applied and Numerical Harmonic Analysis
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4669-1
LEADER 03311nam a22005415i 4500
001 4961
003 DE-He213
005 20130725191852.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780817646691  |9 978-0-8176-4669-1 
024 7 # |a 10.1007/978-0-8176-4669-1  |2 doi 
050 # 4 |a QA403-403.3 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.785  |2 23 
100 1 # |a Krantz, Steven G.  |e author. 
245 1 0 |a Explorations in Harmonic Analysis  |b with Applications to Complex Function Theory and the Heisenberg Group /  |c by Steven G. Krantz.  |h [electronic resource] : 
250 # # |a 1. 
264 # 1 |a Boston, MA :  |b Birkhũser Boston,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied and Numerical Harmonic Analysis 
505 0 # |a Preface -- Background in Fourier Series -- The Fourier Transform -- Fractional and Singular Integrals -- Pseudodifferential Operators -- The Real Variable Point of View -- Several Complex Variables -- Canonical Integral Operators -- Boundary Behavior -- The Heisenberg Group -- Analysis on the Heisenberg Group -- Index. 
520 # # |a This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis. Within the textbook, the new ideas on the Heisenberg group are applied to the study of estimates for both the Szeg ̲and Poisson<U+0013>Szeg ̲integrals on the unit ball in complex space. Thus the main theme of the book is also tied into complex analysis of several variables. With a rigorous but well-paced exposition, this text provides all the necessary background in singular and fractional integrals, as well as Hardy spaces and the function theory of several complex variables, needed to understand Heisenberg analysis. Explorations in Harmonic Analysis is ideal for graduate students in mathematics, physics, and engineering. Prerequisites include a fundamental background in real and complex analysis and some exposure to functional analysis. 
650 # 0 |a Mathematics. 
650 # 0 |a Group theory. 
650 # 0 |a Harmonic analysis. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Partial Differential Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646684 
830 # 0 |a Applied and Numerical Harmonic Analysis 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4669-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)