Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics

Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to g...

Full description

Bibliographic Details
Main Authors: Bartocci, Claudio. (Author), Bruzzo, Ugo. (Author), Hernǹdez Ruipřez, Daniel. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2009.
Series:Progress in Mathematics ; 276
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b11801
LEADER 02774nam a22004695i 4500
001 4960
003 DE-He213
005 20130725192023.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780817646639  |9 978-0-8176-4663-9 
024 7 # |a 10.1007/b11801  |2 doi 
100 1 # |a Bartocci, Claudio.  |e author. 
245 1 0 |a Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics  |c by Claudio Bartocci, Ugo Bruzzo, Daniel Hernǹdez Ruipřez.  |h [electronic resource] / 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 276 
520 # # |a Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character. Fourier<U+0013>Mukai and Nahm Transforms in Geometry and Mathematical Physics examines the algebro-geometric approach (Fourier<U+0013>Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph. Key features: * Basic constructions and definitions are presented in preliminary background chapters * Presentation explores applications and suggests several open questions * Extensive bibliography and index This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Global differential geometry. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical and Computational Physics. 
700 1 # |a Bruzzo, Ugo.  |e author. 
700 1 # |a Hernǹdez Ruipřez, Daniel.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817632465 
830 # 0 |a Progress in Mathematics ;  |v 276 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b11801 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)