Number Theory Structures, Examples, and Problems /

Number theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open pr...

Full description

Bibliographic Details
Main Authors: Andrica, Dorin. (Author), Andreescu, Titu. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b11856
LEADER 03339nam a22004335i 4500
001 4958
003 DE-He213
005 20130725192027.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780817646455  |9 978-0-8176-4645-5 
024 7 # |a 10.1007/b11856  |2 doi 
100 1 # |a Andrica, Dorin.  |e author. 
245 1 0 |a Number Theory  |b Structures, Examples, and Problems /  |c by Dorin Andrica, Titu Andreescu.  |h [electronic resource] : 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Preface -- Divisibility -- Powers of Integers -- Floor Function and Fractional Part -- Digits of Numbers -- Basic Principles in Number Theory -- Arithmetic Functions -- More on Divisibility -- Diophantine Equations -- Some Special Problems in Number Theory -- Problems Involving Binomial Coefficients -- Miscellaneous -- Glossary -- References -- Index. 
520 # # |a Number theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject. Key features of Number Theory: Structures, Examples, and Problems: * A rigorous exposition starts with the natural numbers and the basics. * Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties. * Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered. * Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems. * Glossary, bibliography, and comprehensive index round out the text. Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Combinatorics. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Algebra. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Number Theory. 
700 1 # |a Andreescu, Titu.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817632458 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b11856 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)