A First Course in Bayesian Statistical Methods

This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and metho...

Full description

Bibliographic Details
Main Author: Hoff, Peter D. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Springer Texts in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-92407-6
Description
Summary:This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and methods. The examples and computer code allow the reader to understand and implement basic Bayesian data analyses using standard statistical models and to extend the standard models to specialized data analysis situations. The book begins with fundamental notions such as probability, exchangeability and Bayes' rule, and ends with modern topics such as variable selection in regression, generalized linear mixed effects models, and semiparametric copula estimation. Numerous examples from the social, biological and physical sciences show how to implement these methodologies in practice. Monte Carlo summaries of posterior distributions play an important role in Bayesian data analysis. The open-source R statistical computing environment provides sufficient functionality to make Monte Carlo estimation very easy for a large number of statistical models and example R-code is provided throughout the text. Much of the example code can be run ``as is'' in R, and essentially all of it can be run after downloading the relevant datasets from the companion website for this book. Peter Hoff is an Associate Professor of Statistics and Biostatistics at the University of Washington. He has developed a variety of Bayesian methods for multivariate data, including covariance and copula estimation, cluster analysis, mixture modeling and social network analysis. He is on the editorial board of the Annals of Applied Statistics.
Physical Description:VIII, 270p. online resource.
ISBN:9780387924076
ISSN:1431-875X