Multidimensional Item Response Theory

Multidimensional Item Response Theory is the first book to give thorough coverage to this emerging area of psychometrics. The book describes the commonly used multidimensional item response theory (MIRT) models and the important methods needed for their practical application. These methods include w...

Full description

Bibliographic Details
Main Author: Reckase, M.D. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Statistics for Social and Behavioral Sciences
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-89976-3
LEADER 03647nam a22005175i 4500
001 4885
003 DE-He213
005 20130725205553.0
007 cr nn 008mamaa
008 110414s2009 xxu| s |||| 0|eng d
020 # # |a 9780387899763  |9 978-0-387-89976-3 
024 7 # |a 10.1007/978-0-387-89976-3  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a JHBC  |2 bicssc 
072 # 7 |a SOC027000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Reckase, M.D.  |e author. 
245 1 0 |a Multidimensional Item Response Theory  |c by M.D. Reckase.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Statistics for Social and Behavioral Sciences 
505 0 # |a Introduction -- Historical and intellectual underpinnings of multidimensional item response theory -- Basic background in item response theory -- Extension of item response theory to the multidimensional case -- Estimation of item and person parameters -- Linking of calibrations -- Multidimensional models for computerized adaptive tests -- Other applications of multidimensional item response theory -- Future directions for multidimensional item response theory. 
520 # # |a Multidimensional Item Response Theory is the first book to give thorough coverage to this emerging area of psychometrics. The book describes the commonly used multidimensional item response theory (MIRT) models and the important methods needed for their practical application. These methods include ways to determine the number of dimensions required to adequately model data, procedures for estimating model parameters, ways to define the space for a MIRT model, and procedures for transforming calibrations from different samples to put them in the same space. A full chapter is devoted to methods for multidimensional computerized adaptive testing. The text is appropriate for an advanced course in psychometric theory or as a reference work for those interested in applying MIRT methodology. A working knowledge of unidimensional item response theory and matrix algebra is assumed. Knowledge of factor analysis is also helpful. Mark D. Reckase is a professor of Measurement and Quantitative Methods in the College of Education at Michigan State University. He has been president of the National Council of Measurement in Education, Vice President of Division D of the American Educational Research Association, on the Board of Trustees of the Psychometric Society, and the editor of Applied Psychological Measurement and the Journal of Educational Measurement. He has been doing research in the area of MIRT since 1972. 
650 # 0 |a Statistics. 
650 # 0 |a Computer simulation. 
650 # 0 |a Social sciences  |x Methodology. 
650 # 0 |a Psychological tests and testing. 
650 # 0 |a Psychometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Psychometrics. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Psychological Methods/Evaluation. 
650 2 4 |a Methodology of the Social Sciences. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387899756 
830 # 0 |a Statistics for Social and Behavioral Sciences 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-89976-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)