Quantum Theory of Conducting Matter Superconductivity /

Superconductivity is the most striking phenomenon in solid state physics. The electrical resistance normally arising from impurities and the phonons in a metal suddenly drops to zero below a critical temperature Tc. Not all elemental metals show superconductivity, which suggests that the phenomenon...

Full description

Bibliographic Details
Main Authors: Fujita, Shigeji. (Author), Ito, Kei. (Author), Godoy, Salvador. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-88211-6
Description
Summary:Superconductivity is the most striking phenomenon in solid state physics. The electrical resistance normally arising from impurities and the phonons in a metal suddenly drops to zero below a critical temperature Tc. Not all elemental metals show superconductivity, which suggests that the phenomenon depends on the lattice structure and Fermi surface. The cause of the superconductivity is found to be the phonon-exchange attraction. Quantum Theory of Conducting Matter: Superconductivity targets scientists, researchers and second-year graduate-level students focused on experimentation in the field of condensed matter physics, solid state physics, superconductivity and the Quantum Hall Effect. Many worked out problems are included in the book to aid the reader's comprehension of the subject. The following superconducting properties are covered and microscopically explained in this book: zero resistance Meissner effect flux quantization Josephson effect excitation energy gap Shigeji Fujita and Kei Ito are authors of Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron, predecessor to this book on superconductivity.
Physical Description:XXIV, 298p. 170 illus., 85 illus. in color. online resource.
ISBN:9780387882116