An Introduction to Fronts in Random Media

This book gives a user friendly tutorial to Fronts in Random Media, an interdisciplinary research topic, to senior undergraduates and graduate students in the mathematical sciences, physical sciences and engineering. Fronts or interface motion occur in a wide range of scientific areas where the phys...

Full description

Bibliographic Details
Main Author: Xin, Jack. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Surveys and Tutorials in the Applied Mathematical Sciences ; 5
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-87683-2
LEADER 03075nam a22004095i 4500
001 4775
003 DE-He213
005 20130725192052.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387876832  |9 978-0-387-87683-2 
024 7 # |a 10.1007/978-0-387-87683-2  |2 doi 
100 1 # |a Xin, Jack.  |e author. 
245 1 3 |a An Introduction to Fronts in Random Media  |c by Jack Xin.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Surveys and Tutorials in the Applied Mathematical Sciences ;  |v 5 
505 0 # |a Preface -- Fronts in Homogeneous Media -- Fronts in Periodic Media -- Fronts in Random Burgers Equations -- Fronts and Stochastic Homogenization of Hamilton-Jacobi Equations -- KPP Fronts in Random Media.-References. 
520 # # |a This book gives a user friendly tutorial to Fronts in Random Media, an interdisciplinary research topic, to senior undergraduates and graduate students in the mathematical sciences, physical sciences and engineering. Fronts or interface motion occur in a wide range of scientific areas where the physical and chemical laws are expressed in terms of differential equations. Heterogeneities are always present in natural environments: fluid convection in combustion, porous structures, noise effects in material manufacturing to name a few. Stochastic models hence become natural due to the often lack of complete data in applications. The transition from seeking deterministic solutions to stochastic solutions is both a conceptual change of thinking and a technical change of tools. The book explains ideas and results systematically in a motivating manner. It covers multi-scale and random fronts in three fundamental equations (Burgers, Hamilton-Jacobi, and reaction-diffusion-advection equations) and explores their connections and mechanical analogies. It discusses representation formulas, Laplace methods, homogenization, ergodic theory, central limit theorems, large-deviation principles, variational and maximum principles. It shows how to combine these tools to solve concrete problems. Students and researchers will find the step by step approach and the open problems in the book particularly useful. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387876825 
830 # 0 |a Surveys and Tutorials in the Applied Mathematical Sciences ;  |v 5 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-87683-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)