Galois Theory

The book discusses classical Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While...

Full description

Bibliographic Details
Main Author: Weintraub, Steven H. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-87575-0
LEADER 03477nam a22004335i 4500
001 4766
003 DE-He213
005 20130725205345.0
007 cr nn 008mamaa
008 110406s2009 xxu| s |||| 0|eng d
020 # # |a 9780387875750  |9 978-0-387-87575-0 
024 7 # |a 10.1007/978-0-387-87575-0  |2 doi 
100 1 # |a Weintraub, Steven H.  |e author. 
245 1 0 |a Galois Theory  |c by Steven H. Weintraub.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |a XIV, 212p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Introduction to Galois Theory -- Field Theory and Galois Theory -- Development and Applications of Galois Theory -- Extensions of the Field of Rational Numbers -- Further Topics in Field Theory -- Transcendental Extensions -- A. Some Results from Group Theory -- B. A Lemma on Constructing Fields -- C. A Lemma from Elementary Number Theory -- References -- Index. 
520 # # |a The book discusses classical Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it discusses algebraic closure and infinite Galois extensions, and concludes with a new chapter on transcendental extensions. Key topics and features of this second edition: - Approaches Galois theory from the linear algebra point of view, following Artin; - Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity. Review from the first edition: "The text offers the standard material of classical field theory and Galois theory, though in a remarkably original, unconventional and comprehensive manner & . the book under review must be seen as a highly welcome and valuable complement to existing textbook literature & . It comes with its own features and advantages & it surely is a perfect introduction to this evergreen subject. The numerous explaining remarks, hints, examples and applications are particularly commendable & just as the outstanding clarity and fullness of the text." (Zentralblatt MATH, Vol. 1089 (15), 2006) Steven H. Weintraub is a Professor of Mathematics at Lehigh University and the author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins). 
650 # 0 |a Mathematics. 
650 # 0 |a Field theory (Physics). 
650 # 0 |a Group theory. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387875743 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-87575-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)