Incorporating Knowledge Sources into Statistical Speech Recognition

Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors p...

Full description

Bibliographic Details
Main Authors: Minker, Wolfgang. (Author), Nakamura, Satoshi. (Author), Markov, Konstantin. (Author), Sakti, Sakriani. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2009.
Series:Lecture Notes in Electrical Engineering, 42
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85830-2
LEADER 03233nam a22005055i 4500
001 4746
003 DE-He213
005 20130725191216.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387858302  |9 978-0-387-85830-2 
024 7 # |a 10.1007/978-0-387-85830-2  |2 doi 
100 1 # |a Minker, Wolfgang.  |e author. 
245 1 0 |a Incorporating Knowledge Sources into Statistical Speech Recognition  |c by Wolfgang Minker, Satoshi Nakamura, Konstantin Markov, Sakriani Sakti.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Electrical Engineering,  |v 42  |x 1876-1100 ; 
505 0 # |a Introduction and Book Overview -- Statistical Speech Recognition -- Graphical Framework to Incorporate Knowledge Sources -- Speech Recognition Using GFIKS -- Conclusions and Future Directions. 
520 # # |a Incorporating Knowledge Sources into Statistical Speech Recognition offers solutions for enhancing the robustness of a statistical automatic speech recognition (ASR) system by incorporating various additional knowledge sources while keeping the training and recognition effort feasible. The authors provide an efficient general framework for incorporating knowledge sources into state-of-the-art statistical ASR systems. This framework, which is called GFIKS (graphical framework to incorporate additional knowledge sources), was designed by utilizing the concept of the Bayesian network (BN) framework. This framework allows probabilistic relationships among different information sources to be learned, various kinds of knowledge sources to be incorporated, and a probabilistic function of the model to be formulated. Incorporating Knowledge Sources into Statistical Speech Recognition demonstrates how the statistical speech recognition system may incorporate additional information sources by utilizing GFIKS at different levels of ASR. The incorporation of various knowledge sources, including background noises, accent, gender and wide phonetic knowledge information, in modeling is discussed theoretically and analyzed experimentally. 
650 # 0 |a Engineering. 
650 # 0 |a Computer Communication Networks. 
650 # 0 |a Acoustics. 
650 # 0 |a Computer engineering. 
650 # 0 |a Telecommunication. 
650 1 4 |a Engineering. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Acoustics. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 # |a Nakamura, Satoshi.  |e author. 
700 1 # |a Markov, Konstantin.  |e author. 
700 1 # |a Sakti, Sakriani.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387858296 
830 # 0 |a Lecture Notes in Electrical Engineering,  |v 42  |x 1876-1100 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85830-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)