Sobolev Spaces in Mathematics II Applications in Analysis and Partial Differential Equations /

Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are in the focus of this volume: boundary value problems in domains with singularit...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Maz'ya, Vladimir. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:International Mathematical Series, 9
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85650-6
LEADER 04912nam a22005295i 4500
001 4739
003 DE-He213
005 20130725190424.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387856506  |9 978-0-387-85650-6 
024 7 # |a 10.1007/978-0-387-85650-6  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Maz'ya, Vladimir.  |e editor. 
245 1 0 |a Sobolev Spaces in Mathematics II  |b Applications in Analysis and Partial Differential Equations /  |c edited by Vladimir Maz'ya.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a International Mathematical Series,  |v 9  |x 1571-5485 ; 
505 0 # |a On the Mathematical Works of S.L. Sobolev in the 1930s, V. Babich -- Sobolev in Siberia, Y. Reshetnyak -- Boundary Harnack Principle and the Quasihyperbolic Boundary Condition, H. Aikawa -- Sobolev Spaces and their Relatives: local Polynomial Approximation Approach, Y. Brudnyi -- Spectral Stability of Higher Order Uniformly Elliptic Operators, V. Burenkov, P.D. Lamberti -- Conductor Inequalities and Criteria for Sobolev - Lorentz Two - Weight Inequalities, S. Costea, V. Maz'ya -- Besov Regularity for the Poisson Equation in Smooth and Polyhedral Cones, S. Dahlke, W. Sickel -- Variational Approach to Complicated Similarity Solutions of Higher Order Nonlinear Evolution Partial Differential Equations, V. Galaktionov et al -- Lq,p-Cohomology of Riemannian Manifolds with Negative Curvature, V. Gol'dshtein, M. Troyanov -- Volume Growth and Escape Rate of Brownian Motion on a Cartan<U+0013>Hadamard Manifold, A. Grigor'yan, E. Hsu -- Sobolev Estimates for the Green Potential Associated with the Robin<U+0013>Laplacian in Lipschitz Domains Satisfying a Uniform Exterior Ball Condition, T. Jakab et al -- Properties of Spectra of Boundary Value Problems in Cylindrical and Quasicylindrical Domains, S. Nazarov -- Estimates for Completeley Integrable Systems of Differential Operators and Applications, Y. Reshetnyak -- Counting Schrd̲inger Boundstates: Semiclassics and Beyond, G. Rozenblum, M. Solomyak -- Function Spaces on Cellular Domains, H. Triebel. 
520 # # |a Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are in the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integrability of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930's and foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included. Contributors include: Vasilii Babich (Russia); Yuri Reshetnyak (Russia); Hiroaki Aikawa (Japan); Yuri Brudnyi (Israel); Victor Burenkov (Italy) and Pier Domenico Lamberti (Italy); Serban Costea (Canada) and Vladimir Maz'ya (USA-UK-Sweden); Stephan Dahlke (Germany) and Winfried Sickel (Germany); Victor Galaktionov (UK), Enzo Mitidieri (Italy), and Stanislav Pokhozhaev (Russia); Vladimir Gol'dshtein (Israel) and Marc Troyanov (Switzerland); Alexander Grigor'yan (Germany) and Elton Hsu (USA); Tunde Jakab (USA), Irina Mitrea (USA), and Marius Mitrea (USA); Sergey Nazarov (Russia); Grigori Rozenblum (Sweden) and Michael Solomyak (Israel); Hans Triebel (Germany) 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Functional analysis. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Numerical analysis. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Optimization. 
650 2 4 |a Numerical Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387856490 
830 # 0 |a International Mathematical Series,  |v 9  |x 1571-5485 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85650-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)