Principles of Harmonic Analysis

The present book is intended as a text for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up to Anton Deitmer's previous book, A First Course in Harmonic Analysis, or independently, if the students already have a modest knowledge of Fourie...

Full description

Bibliographic Details
Main Authors: Deitmar, Anton. (Author), Echterhoff, Siegfried. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85469-4
LEADER 03138nam a22004695i 4500
001 4722
003 DE-He213
005 20130725190516.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387854694  |9 978-0-387-85469-4 
024 7 # |a 10.1007/978-0-387-85469-4  |2 doi 
050 # 4 |a QA403-403.3 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.785  |2 23 
100 1 # |a Deitmar, Anton.  |e author. 
245 1 0 |a Principles of Harmonic Analysis  |c by Anton Deitmar, Siegfried Echterhoff.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Preface -- Haar Integration -- Banach Algebras -- Duality for Abelian Groups -- The Structure of LCA-Groups -- Operators on Hilbert Spaces -- Representations -- Compact Groups -- Direct Integrals -- The Selberg Trace Formula -- The Heisenberg Group -- SL2(R) -- Wavelets -- Topology -- Measure and Integration -- Functional Analysis -- Bibliography -- Index. 
520 # # |a The present book is intended as a text for a graduate course on abstract harmonic analysis and its applications. The book can be used as a follow up to Anton Deitmer's previous book, A First Course in Harmonic Analysis, or independently, if the students already have a modest knowledge of Fourier Analysis. In this book, among other things, proofs are given of Pontryagin Duality and the Plancherel Theorem for LCA-groups, which were mentioned but not proved in A First Course in Harmonic Analysis. Using Pontryagin duality, the authors also obtain various structure theorems for locally compact abelian groups. The book then proceeds with Harmonic Analysis on non-abelian groups and its applications to theory in number theory and the theory of wavelets. Knowledge of set theoretic topology, Lebesgue integration, and functional analysis on an introductory level will be required in the body of the book. For the convenience of the reader, all necessary ingredients from these areas have been included in the appendices. Professor Deitmar is Professor of Mathematics at the University of T<U+00fc>bingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. Professor Echterhoff is Professor of Mathematics and Computer Science at the University of M<U+00fc>nster, Germany. 
650 # 0 |a Mathematics. 
650 # 0 |a Harmonic analysis. 
650 # 0 |a Fourier analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Fourier Analysis. 
700 1 # |a Echterhoff, Siegfried.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387854687 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-85469-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)