Solving the Pell Equation

Pell's equation is a very simple, yet fundamental Diophantine equation which is believed to have been known to mathematicians for over 2000 years. Because of its popularity, the Pell equation is often discussed in textbooks and recreational books concerning elementary number theory, but usually...

Full description

Bibliographic Details
Main Authors: Jacobson, Michael J. (Author), Williams, Hugh C. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:CMS Books in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-84923-2
LEADER 03533nam a22004455i 4500
001 4714
003 DE-He213
005 20130725190515.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387849232  |9 978-0-387-84923-2 
024 7 # |a 10.1007/978-0-387-84923-2  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Jacobson, Michael J.  |e author. 
245 1 0 |a Solving the Pell Equation  |c by Michael J. Jacobson, Hugh C. Williams.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a CMS Books in Mathematics,  |x 1613-5237 
505 0 # |a Preface -- Introduction -- Early History of the Pell Equation -- Continued Fractions -- Quadratic Number Fields -- Ideals and Continued Fractions -- Quadratic Number Fields -- Ideals and Continued Fractions -- Some Special Pell Equations -- The Ideal Class Group -- The Analytic Class Number Formula -- Some Additional Analytic Results -- Some Computational Techniques -- (f, p) Representations of O-ideals -- Compact Representations -- The Subexponential Method -- Applications to Cryptography -- Unconditional Verification of the Regulator and the Class Number -- Principal Ideal Testing in O -- Conclusion -- Appendix -- References -- Index. 
520 # # |a Pell's equation is a very simple, yet fundamental Diophantine equation which is believed to have been known to mathematicians for over 2000 years. Because of its popularity, the Pell equation is often discussed in textbooks and recreational books concerning elementary number theory, but usually not in much depth. This book provides a modern and deeper approach to the problem of solving the Pell equation. The main component of this will be computational techniques, but in the process of deriving these it will be necessary to develop the corresponding theory. One objective of this book is to provide a less intimidating introduction for senior undergraduates and others with the same level of preparedness to the delights of algebraic number theory through the medium of a mathematical object that has fascinated people since the time of Archimedes. To achieve this, this work is made accessible to anyone with some knowledge of elementary number theory and abstract algebra. Many references and notes are provided for those who wish to follow up on various topics, and the authors also describe some rather surprising applications to cryptography. The intended audience is number theorists, both professional and amateur, and students, but we wish to emphasize that this is not intended to be a textbook; its focus is much too narrow for that. It could, however be used as supplementary reading for students enrolled in a second course in number theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
700 1 # |a Williams, Hugh C.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387849225 
830 # 0 |a CMS Books in Mathematics,  |x 1613-5237 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-84923-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)