Introduction to Siegel Modular Forms and Dirichlet Series

Introduction to Siegel Modular Forms and Dirichlet Series gives a concise and self-contained introduction to the multiplicative theory of Siegel modular forms, Hecke operators, and zeta functions, including the classical case of modular forms in one variable. It serves to attract young researchers t...

Full description

Bibliographic Details
Main Author: Andrianov, Anatoli. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer US, 2009.
Series:Universitext,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-78753-4
LEADER 03242nam a22004575i 4500
001 4626
003 DE-He213
005 20130726224835.0
007 cr nn 008mamaa
008 100715s2009 xxu| s |||| 0|eng d
020 # # |a 9780387787534  |9 978-0-387-78753-4 
024 7 # |a 10.1007/978-0-387-78753-4  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Andrianov, Anatoli.  |e author. 
245 1 0 |a Introduction to Siegel Modular Forms and Dirichlet Series  |c by Anatoli Andrianov.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer US,  |c 2009. 
300 # # |a XII, 184p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext,  |x 0172-5939 
505 0 # |a Preface -- Introduction: The Two Features of Arithmetical Zeta Functions -- Modular Forms -- Dirichlet Series of Modular Forms -- Hecke-Shimura Rings of Double Cosets -- Hecke Operators -- Euler Factorization of Radial Series -- Conclusion: Other Groups, Other Horizons -- Notes -- Short Bibliography.-. 
520 # # |a Introduction to Siegel Modular Forms and Dirichlet Series gives a concise and self-contained introduction to the multiplicative theory of Siegel modular forms, Hecke operators, and zeta functions, including the classical case of modular forms in one variable. It serves to attract young researchers to this beautiful field and makes the initial steps more pleasant. It treats a number of questions that are rarely mentioned in other books. It is the first and only book so far on Siegel modular forms that introduces such important topics as analytic continuation and the functional equation of spinor zeta functions of Siegel modular forms of genus two. Unique features include: * New, simplified approaches and a fresh outlook on classical problems * The abstract theory of HeckeỚ<U+001c>Shimura rings for symplectic and related groups * The action of Hecke operators on Siegel modular forms * Applications of Hecke operators to a study of the multiplicative properties of Fourier coefficients of modular forms * The proof of analytic continuation and the functional equation (under certain assumptions) for Euler products associated with modular forms of genus two *Numerous exercises Anatoli Andrianov is a leading researcher at the St. Petersburg branch of the Steklov Mathematical Institute of the Russian Academy of Sciences. He is well known for his works on the arithmetic theory of automorphic functions and quadratic forms, a topic on which he has lectured at many universities around the world. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebra. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387787527 
830 # 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-78753-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)