Class Field Theory

Class field theory, the study of abelian extensions of algebraic number fields, is one of the largest branches of algebraic number theory. It brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. Some of its consequences (e.g., the Che...

Full description

Bibliographic Details
Main Author: Childress, Nancy. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-72490-4
LEADER 02481nam a22003975i 4500
001 4468
003 DE-He213
005 20130725205248.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 # # |a 9780387724904  |9 978-0-387-72490-4 
024 7 # |a 10.1007/978-0-387-72490-4  |2 doi 
100 1 # |a Childress, Nancy.  |e author. 
245 1 0 |a Class Field Theory  |c by Nancy Childress.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |a X, 226 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Preface -- A Brief Review -- Dirichlet's Theorem on Primes in Arithmetic Progressions -- Ray Class Groups -- The Idelic Theory -- Artin Reciprocity -- The Existence Theorem, Consequences and Applications -- Local Class Field Theory -- Bibliography -- Index. 
520 # # |a Class field theory, the study of abelian extensions of algebraic number fields, is one of the largest branches of algebraic number theory. It brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. Some of its consequences (e.g., the Chebotarev density theorem) apply even to nonabelian extensions. This book is an accessible introduction to class field theory. It takes a traditional approach in that it presents the global material first, using some of the original techniques of proof, but in a fashion that is cleaner and more streamlined than most other books on this topic. It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included exercises throughout the text. Professor Nancy Childress is a member of the Mathematics Faculty at Arizona State University. 
650 # 0 |a Mathematics. 
650 # 0 |a Field theory (Physics). 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Number Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387724898 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-72490-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)