High-Dimensional Data Analysis in Cancer Research

With the advent of high-throughput technologies, various types of high-dimensional data have been generated in recent years for the understanding of biological processes, especially processes that relate to disease occurrence or management of cancer. Motivated by these important applications in canc...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Li, Xiaochun. (Editor), Xu, Ronghui. (Editor)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Applied Bioinformatics and Biostatistics in Cancer Research
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-69765-9
LEADER 03134nam a22005055i 4500
001 4448
003 DE-He213
005 20130725205248.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 # # |a 9780387697659  |9 978-0-387-69765-9 
024 7 # |a 10.1007/978-0-387-69765-9  |2 doi 
100 1 # |a Li, Xiaochun.  |e editor. 
245 1 0 |a High-Dimensional Data Analysis in Cancer Research  |c edited by Xiaochun Li, Ronghui Xu.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |a VIII, 392p. 23 illus., 6 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Bioinformatics and Biostatistics in Cancer Research 
505 0 # |a Introduction -- Multiple comparisons -- marginal model vs. conditonal model -- multivariate nonparametric regression -- Multivariate ROC -- Methods for estimating prediction error -- Trees -- bagging/boosting/model averaging -- SVM and Sparse SVM -- Bayesian -- Appendix. 
520 # # |a With the advent of high-throughput technologies, various types of high-dimensional data have been generated in recent years for the understanding of biological processes, especially processes that relate to disease occurrence or management of cancer. Motivated by these important applications in cancer research, there has been a dramatic growth in the development of statistical methodology in the analysis of high-dimensional data, particularly related to regression model selection, estimation and prediction. High-Dimensional Data Analysis in Cancer Research, edited by Xiaochun Li and Ronghui Xu, is a collective effort to showcase statistical innovations for meeting the challenges and opportunities uniquely presented by the analytical needs of high-dimensional data in cancer research, particularly in genomics and proteomics. All the chapters included in this volume contain interesting case studies to demonstrate the analysis methodology. High-Dimensional Data Analysis in Cancer Research is an invaluable reference for researchers, statisticians, bioinformaticians, graduate students and data analysts working in the fields of cancer research. 
650 # 0 |a Medicine. 
650 # 0 |a Oncology. 
650 # 0 |a Human genetics. 
650 # 0 |a Medical laboratories. 
650 # 0 |a Microbiology. 
650 # 0 |a Neurosciences. 
650 1 4 |a Biomedicine. 
650 2 4 |a Cancer Research. 
650 2 4 |a Laboratory Medicine. 
650 2 4 |a Human Genetics. 
650 2 4 |a Medical Microbiology. 
650 2 4 |a Molecular Medicine. 
650 2 4 |a Neurosciences. 
700 1 # |a Xu, Ronghui.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387697635 
830 # 0 |a Applied Bioinformatics and Biostatistics in Cancer Research 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-69765-9 
912 # # |a ZDB-2-SBL 
950 # # |a Biomedical and Life Sciences (Springer-11642)