Maximum Penalized Likelihood Estimation Volume II: Regression /

This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in statistics, operations research and applied mathematics, as well as for researchers and practitioners in the field. The present volume deals with nonpara...

Full description

Bibliographic Details
Main Authors: LaRiccia, Vincent N. (Author), Eggermont, Paul P. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Springer Series in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b12285
LEADER 04136nam a22005055i 4500
001 4434
003 DE-He213
005 20130725191932.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387689029  |9 978-0-387-68902-9 
024 7 # |a 10.1007/b12285  |2 doi 
100 1 # |a LaRiccia, Vincent N.  |e author. 
245 1 0 |a Maximum Penalized Likelihood Estimation  |b Volume II: Regression /  |c by Vincent N. LaRiccia, Paul P. Eggermont.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Series in Statistics,  |x 0172-7397 
505 0 # |a Smoothing splines of arbitrary order -- Deterministic and random designs -- Reproducing kernel Hilbert spaces, equivalent reproducing kernel estimators -- Strong approximation and confidence bands -- Computing: the Bayesian model and the Kalman filter -- Other estimators: kernels, sieves, local polynomials, least-absolute deviations, total-variation penalized least squares -- Simulations and examples. 
520 # # |a This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in statistics, operations research and applied mathematics, as well as for researchers and practitioners in the field. The present volume deals with nonparametric regression. The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. Smoothing splines and local polynomials are studied in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is that letting the innerproduct depend on the smoothing parameter opens up new possibilities. It leads to asymptotically equivalent reproducing kernel estimators (without qualifications), and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and via strong approximations, to confidence bands for the unknown regression function. The reason for studying smoothing splines of arbitrary order is that one wants to use them for data analysis. Regarding the actual computation, the usual scheme based on spline interpolation is useful for cubic smoothing splines only. For splines of arbitrary order, the Kalman filter is the most important method, the intricacies of which are explained in full. The authors also discuss simulation results for smoothing splines and local and global polynomials for a variety of test problems as well as results on confidence bands for the unknown regression function based on undersmoothed quintic smoothing splines with remarkably good coverage probabilities. P.P.B. Eggermont and V.N. LaRiccia are with the Statistics Program of the Department of Food and Resource Economics in the College of Agriculture and Natural Resources at the University of Delaware, and the authors of Maximum Penalized Likelihood Estimation: Volume I: Density Estimation. 
650 # 0 |a Statistics. 
650 # 0 |a Biometrics. 
650 # 0 |a Statistical methods. 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Mathematical statistics. 
650 # 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Biostatistics. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Econometrics. 
650 2 4 |a Biometrics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 # |a Eggermont, Paul P.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387402673 
830 # 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b12285 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)