|
|
|
|
LEADER |
03766nam a22004935i 4500 |
001 |
4400 |
003 |
DE-He213 |
005 |
20130726230627.0 |
007 |
cr nn 008mamaa |
008 |
100301s2009 xxu| s |||| 0|eng d |
020 |
# |
# |
|a 9780387304281
|9 978-0-387-30428-1
|
024 |
7 |
# |
|a 10.1007/978-0-387-30428-1
|2 doi
|
050 |
# |
4 |
|a T174.7
|
050 |
# |
4 |
|a TA418.9.N35
|
072 |
# |
7 |
|a TBN
|2 bicssc
|
072 |
# |
7 |
|a TEC027000
|2 bisacsh
|
072 |
# |
7 |
|a SCI050000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.115
|2 23
|
100 |
1 |
# |
|a Merhari, Lhadi.
|e editor.
|
245 |
1 |
0 |
|a Hybrid Nanocomposites for Nanotechnology
|b Electronic, Optical, Magnetic and Biomedical Applications /
|c edited by Lhadi Merhari.
|h [electronic resource] :
|
264 |
# |
1 |
|a Boston, MA :
|b Springer US,
|c 2009.
|
300 |
# |
# |
|b online resource.
|
336 |
# |
# |
|a text
|b txt
|2 rdacontent
|
337 |
# |
# |
|a computer
|b c
|2 rdamedia
|
338 |
# |
# |
|a online resource
|b cr
|2 rdacarrier
|
347 |
# |
# |
|a text file
|b PDF
|2 rda
|
505 |
0 |
# |
|a Introduction -- Trends in non-traditional applications of polymer-inorganic nanocomposites -- Synthesis methods and issues; production scaling up -- Characterizations methods -- Electronic applications (e.g. resists for microelectronics) -- Optical applications (e.g. non-linear optical wavegides) -- Magnetic applications (e.g. recording media) -- Bio/medical applications (e.g. bio-resists, tissue engineering) -- Conclusion/Future challenges.
|
520 |
# |
# |
|a Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications introduces readers to the complex development of new functional organic-inorganic nanomaterials and explores their non-traditional applications. The traditional application of these nanocomposites has been the reinforcement of plastics by the addition of inorganic fillers, exploiting the enhancement of mechanical properties for commodity plastics. Hybrid nanocomposites provide an attractive, versatile, technological platform for emerging high-added-value applications such as photovoltaic cells and light-emitting devices, lithium-ion batteries, supercapacitors, and biosensors. Composed of seventeen chapters written by leading international authors, this book covers topics such as: Synthesis of a wide range of hybrid nanocomposites based on methods including sol-gel techniques and surface grafting of nanoparticles. In-depth nanocomposite characterizations via DLS, DSC, FTIR, MALDI, NMR, SANS, SAXS, SEC, SEM, TEM, TGA, WAXS techniques. Optimization of fullerene-based resists for nanolithography. Strategies for hermetic coatings and advanced packaging of integrated circuits. Development of bioactive bone cements and drug-delivery systems. Fabrication of optical, electrochemical and magneto-biosensors. With over 2500 bibliographic citations, Hybrid Nanocomposites for Nanotechnology: Electronic, Optical, Magnetic and Biomedical Applications is an invaluable resource for scientists, engineers, and researchers in a wide variety of disciplines including materials science, surface chemistry, energy and data storage, photonics, microelectronics, pharmacy, medicine, biotechnology and bioengineering.
|
650 |
# |
0 |
|a Polymers.
|
650 |
# |
0 |
|a Engineering design.
|
650 |
# |
0 |
|a Nanotechnology.
|
650 |
1 |
4 |
|a Materials Science.
|
650 |
2 |
4 |
|a Nanotechnology.
|
650 |
2 |
4 |
|a Condensed Matter Physics.
|
650 |
2 |
4 |
|a Polymer Sciences.
|
650 |
2 |
4 |
|a Ceramics, Glass, Composites, Natural Methods.
|
650 |
2 |
4 |
|a Engineering Design.
|
710 |
2 |
# |
|a SpringerLink (Online service)
|
773 |
0 |
# |
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387723983
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-30428-1
|
912 |
# |
# |
|a ZDB-2-CMS
|
950 |
# |
# |
|a Chemistry and Materials Science (Springer-11644)
|