The q-theory of Finite Semigroups

Discoveries in finite semigroups have influenced several mathematical fields, including theoretical computer science, tropical algebra via matrix theory with coefficients in semirings, and other areas of modern algebra. This comprehensive, encyclopedic text will provide the reader  from the graduat...

Full description

Bibliographic Details
Main Authors: Rhodes, John. (Author), Steinberg, Benjamin. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2009.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b104443
LEADER 03506nam a22004575i 4500
001 4381
003 DE-He213
005 20130725191531.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387097817  |9 978-0-387-09781-7 
024 7 # |a 10.1007/b104443  |2 doi 
100 1 # |a Rhodes, John.  |e author. 
245 1 4 |a The q-theory of Finite Semigroups  |c by John Rhodes, Benjamin Steinberg.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 # # |a XXII, 666p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 # |a Preface -- Introduction -- 1. Foundations for Finite Semigroup Theory -- 2. The q-operator -- 3.The Equational Theory -- 4. The Complexity of Finite Semigroups -- 5. Two-Sided Complexity and the Complexity of Operators -- 6. Algebraic Lattices, Continuous Lattices and Closure Operators -- 7. The Abstract Spectral Theory of PV -- 8. Quantales -- 9. The Triangular Product and Decomposition Results for Semirings -- A. The Green-Rees Local Structure Theory -- B. Tables on Preservation of Sups and Infs -- List of Problems -- References -- Table of Pseudovarieties -- Table of Operators and Products -- Index of Notation -- Author Index -- Index. 
520 # # |a Discoveries in finite semigroups have influenced several mathematical fields, including theoretical computer science, tropical algebra via matrix theory with coefficients in semirings, and other areas of modern algebra. This comprehensive, encyclopedic text will provide the reader from the graduate student to the researcher/practitioner with a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. Key features: * Develops q-theory, a new theory that provides a unifying approach to finite semigroup theory via quantization; * Contains the only contemporary exposition of the complete theory of the complexity of finite semigroups; * Introduces spectral theory into finite semigroup theory; * Develops the theory of profinite semigroups from first principles, making connections with spectra of Boolean algebras of regular languages; * Presents over 70 research problems, most new, and hundreds of exercises. Additional features: * For newcomers, an appendix on elementary finite semigroup theory; * Extensive bibliography and index. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, and thereby updates and modernizes the literature of semigroup theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Algebra. 
650 # 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Mathematical Logic and Formal Languages. 
700 1 # |a Steinberg, Benjamin.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387097800 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b104443 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)