Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems...

Full description

Bibliographic Details
Main Authors: Meyer, Kenneth. (Author), Hall, Glen. (Author), Offin, Dan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2009.
Series:Applied Mathematical Sciences, 90
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-09724-4
LEADER 03537nam a22005175i 4500
001 4365
003 DE-He213
005 20130725190519.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 # # |a 9780387097244  |9 978-0-387-09724-4 
024 7 # |a 10.1007/978-0-387-09724-4  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Meyer, Kenneth.  |e author. 
245 1 0 |a Introduction to Hamiltonian Dynamical Systems and the N-Body Problem  |c by Kenneth Meyer, Glen Hall, Dan Offin.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Applied Mathematical Sciences,  |v 90  |x 0066-5452 ; 
505 0 # |a Hamiltonian Differential Equations and the N-Body Problem -- Exterior Algebra and Differential Forms -- Symplectic transformations and coordinates -- Introduction to the Geometric Theory of Hamiltonian Dynamical Systems -- Continuation of Periodic Solutions -- Perturbation Theory and Normal Forms -- Bifurcations of Periodic Orbits -- Stability and KAM Theory -- Twist Maps and Invariant Curves. 
520 # # |a This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincar'̌s continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematical and Computational Physics. 
650 2 4 |a Analysis. 
700 1 # |a Hall, Glen.  |e author. 
700 1 # |a Offin, Dan.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387097237 
830 # 0 |a Applied Mathematical Sciences,  |v 90  |x 0066-5452 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-09724-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)