Reactive Search and Intelligent Optimization

Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optim...

Full description

Bibliographic Details
Main Authors: Battiti, Roberto. (Author), Brunato, Mauro. (Author), Mascia, Franco. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 2009.
Series:Operations Research/Computer Science Interfaces Series, 45
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-09624-7
LEADER 04011nam a22005175i 4500
001 4338
003 DE-He213
005 20130725205240.0
007 cr nn 008mamaa
008 110401s2009 xxu| s |||| 0|eng d
020 # # |a 9780387096247  |9 978-0-387-09624-7 
024 7 # |a 10.1007/978-0-387-09624-7  |2 doi 
100 1 # |a Battiti, Roberto.  |e author. 
245 1 0 |a Reactive Search and Intelligent Optimization  |c by Roberto Battiti, Mauro Brunato, Franco Mascia.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 2009. 
300 # # |a X, 182p. 74 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Operations Research/Computer Science Interfaces Series,  |v 45  |x 1387-666X ; 
505 0 # |a Preface -- Introduction -- Reacting on the neighborhood -- Reacting on the annealing schedule -- Reactive prohibitions -- Model-based search -- Reacting on the objective function -- Reinforcement learning -- Algorithm portfolios and restart strategies -- Racing -- Metrics, landscapes, and features -- Relationships between reactive search and reinforcement learning -- Index. 
520 # # |a Reactive Search integrates sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. By automatically adjusting the working parameters, a reactive search self-tunes and adapts, effectively learning by doing until a solution is found. Intelligent Optimization, a superset of Reactive Search, concerns online and off-line schemes based on the use of memory, adaptation, incremental development of models, experimental algorithms applied to optimization, intelligent tuning and design of heuristics. Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities and schemes for the automated tuning of these parameters. Anyone working in decision making in business, engineering, economics or science will find a wealth of information here. 
650 # 0 |a Mathematics. 
650 # 0 |a Electronic data processing. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Operations research. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Industrial engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Operations Research, Mathematical Programming. 
650 2 4 |a Operations Research/Decision Theory. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Industrial and Production Engineering. 
700 1 # |a Brunato, Mauro.  |e author. 
700 1 # |a Mascia, Franco.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387096230 
830 # 0 |a Operations Research/Computer Science Interfaces Series,  |v 45  |x 1387-666X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-09624-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)