Ensemble methods foundations and algorithms /

"This comprehensive book presents an in-depth and systematic introduction to ensemble methods for researchers in machine learning, data mining, and related areas. It helps readers solve modem problems in machine learning using these methods. The author covers the spectrum of research in ensembl...

Full description

Bibliographic Details
Main Author: Zhou, Zhi-Hua, Ph. D.
Format: Electronic
Language:English
Published: Boca Raton, Fla. : CRC Press, 2012.
Series:Chapman & Hall/CRC machine learning & pattern recognition series.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02126nam a2200361Ia 4500
001 3767
003 FlBoTFG
005 20120720130717.0
006 m|||||o||d||||||||
007 cr||||
008 120720s2012 fluad sb 001 0 eng d
020 # # |a 9781439830055 (e-book : PDF) 
040 # # |a FlBoTFG  |c FlBoTFG 
090 # # |a QA278.4  |b .Z47 2012 
092 # # |a 006.31  |b Z638 
100 1 # |a Zhou, Zhi-Hua,  |c Ph. D. 
245 1 0 |a Ensemble methods  |b foundations and algorithms /  |c Zhi-Hua Zhou.  |h [electronic resource] : 
260 # # |a Boca Raton, Fla. :  |b CRC Press,  |c 2012. 
300 # # |a xiv, 222 p. :  |b ill. 
490 1 # |a Chapman & Hall/CRC machine learning & pattern recognition series 
500 # # |a "A Chapman & Hall book." 
504 # # |a Includes bibliographical references (p. 187-218) and index. 
505 0 # |a 1. Introduction -- 2. Boosting -- 3. Bagging -- 4. Combination methods -- 5. Diversity -- 6. Ensemble pruning -- 7. Clustering ensembles -- 8. Advanced topics. 
520 # # |a "This comprehensive book presents an in-depth and systematic introduction to ensemble methods for researchers in machine learning, data mining, and related areas. It helps readers solve modem problems in machine learning using these methods. The author covers the spectrum of research in ensemble methods, including such famous methods as boosting, bagging, and rainforest, along with current directions and methods not sufficiently addressed in other books. Chapters explore cutting-edge topics, such as semi-supervised ensembles, cluster ensembles, and comprehensibility, as well as successful applications"--  |c Provided by publisher. 
530 # # |a Also available in print edition. 
538 # # |a Mode of access: World Wide Web. 
650 # 0 |a Multiple comparisons (Statistics) 
650 # 0 |a Set theory. 
650 # 0 |a Mathematical analysis. 
655 # 7 |a Electronic books.  |2 lcsh 
776 1 # |z 9781439830031 (hardback) 
830 # 0 |a Chapman & Hall/CRC machine learning & pattern recognition series. 
856 4 0 |q application/PDF  |u https://ezaccess.library.uitm.edu.my/login?url=http://marc.crcnetbase.com/isbn/9781439830055  |z View fulltext via EzAccess