Jordan Canonical Form theory and practice /

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with...

Full description

Bibliographic Details
Main Author: Weintraub, Steven H.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.
Series:Synthesis lectures on mathematics and statistics (Online), # 6.
Subjects:
Online Access:Abstract with links to full text
LEADER 04181nam a2200469 a 4500
001 3442
005 20090910133656.0
006 m e d
007 cr cn |||m|||a
008 090909s2009 caua fsa 001 0 eng d
020 # # |a 9781608452514 (electronic bk.) 
020 # # |z 9781608452507 (pbk.) 
024 7 # |a 10.2200/S00218ED1V01Y200908MAS006  |2 doi 
035 # # |a (CaBNvSL)gtp00535641 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QA252.5  |b .W455 2009 
082 0 4 |a 512.24  |2 22 
100 1 # |a Weintraub, Steven H. 
245 1 0 |a Jordan Canonical Form  |b theory and practice /  |c Steven H. Weintraub.  |h [electronic resource] : 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2009. 
300 # # |a 1 electronic text (x, 96 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on mathematics and statistics,  |v # 6  |x 1938-1751 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on September 9, 2009). 
500 # # |a Series from website. 
500 # # |a Includes index. 
505 0 # |a 1. Fundamentals on vector spaces and linear transformations -- Bases and coordinates -- Linear transformations and matrices -- Some special matrices -- Polynomials in T and A -- Subspaces, complements, and invariant subspaces -- 2. The structure of a linear transformation -- Eigenvalues, eigenvectors, and generalized eigenvectors -- The minimum polynomial -- Reduction to BDBUTCD form -- The diagonalizable case -- Reduction to Jordan Canonical Form -- Exercises -- 3. An algorithm for Jordan Canonical Form and Jordan Basis -- The ESP of a linear transformation -- The algorithm for Jordan Canonical Form -- The algorithm for a Jordan Basis -- Examples -- Exercises -- A. Answers to odd-numbered exercises -- Notation -- Index. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 3 # |a Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials.We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V -. V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1.We further present an algorithm to find P and J , assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J , and a refinement, the labelled eigenstructure picture (ESP) of A, determines P as well.We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Jordan algebras. 
650 # 0 |a Algebras, Linear. 
650 # 0 |a Eigenvalues. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on mathematics and statistics (Online),  |v # 6.  |x 1938-1751 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006  |3 Abstract with links to full text