Markov logic an interface layer for artificial intelligence /

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic a...

Full description

Bibliographic Details
Main Author: Domingos, Pedro.
Other Authors: Lowd, Daniel.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.
Series:Synthesis lectures on artificial intelligence and machine learning (Online), # 7.
Subjects:
Online Access:Abstract with links to full text
LEADER 05091nam a2200733 a 4500
001 3425
005 20090709121010.0
006 m e d
007 cr cn |||m|||a
008 090708s2009 caua fsab 000 0 eng d
020 # # |a 9781598296938 (electronic bk.) 
020 # # |z 9781598296921 (pbk.) 
024 7 # |a 10.2200/S00206ED1V01Y200907AIM007  |2 doi 
035 # # |a (CaBNvSL)gtp00534962 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a Q336  |b .D655 2009 
082 0 4 |a 006.3  |2 22 
100 1 # |a Domingos, Pedro. 
245 1 0 |a Markov logic  |b an interface layer for artificial intelligence /  |c Pedro Domingos and Daniel Lowd.  |h [electronic resource] : 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2009. 
300 # # |a 1 electronic text (viii, 145 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on artificial intelligence and machine learning,  |v # 7  |x 1939-4616 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on July 8, 2009). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 131-143). 
505 0 # |a Introduction -- The interface layer -- What is the interface layer for AI -- Markov logic and alchemy: an emerging solution -- Overview of the book -- Markov logic -- First-order logic -- Markov networks -- Markov logic -- Relation to other approaches -- Inference -- Inferring the most probable explanation -- Computing conditional probabilities -- Lazy inference -- Lifted inference -- Learning -- Weight learning -- Structure learning and theory revision -- Unsupervised learning -- Transfer learning -- Extensions -- Continuous domains -- Infinite domains -- Recursive Markov logic -- Relational decision theory -- Applications -- Collective classification -- Social network analysis and link prediction -- Entity resolution -- Information extraction -- Unsupervised coreference resolution -- Robot mapping -- Link-based clustering -- Semantic network extraction from text -- Conclusion -- The alchemy system -- Input files -- Inference -- Weight learning -- Structure learning -- Bibliography -- Biography. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 3 # |a Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Artificial intelligence  |x Data processing. 
650 # 0 |a Interface circuits. 
650 # 0 |a Markov processes. 
690 # # |a Markov logic 
690 # # |a Statistical relational learning 
690 # # |a Machine learning 
690 # # |a Graphical models 
690 # # |a Firstorder logic 
690 # # |a Probabilistic logic 
690 # # |a Markov networks 
690 # # |a Markov random fields 
690 # # |a Inductive logic programming 
690 # # |a Satisfiability 
690 # # |a Markov chain Monte Carlo 
690 # # |a Belief propagation 
690 # # |a Collective classification 
690 # # |a Link prediction 
690 # # |a Link-based clustering 
690 # # |a Entity resolution 
690 # # |a Information extraction 
690 # # |a Social network analysis 
690 # # |a Natural language processing 
690 # # |a Robot mapping 
690 # # |a Computational biology 
700 1 # |a Lowd, Daniel. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on artificial intelligence and machine learning (Online),  |v # 7.  |x 1939-4616 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00206ED1V01Y200907AIM007  |3 Abstract with links to full text