Landmarking and segmentation of 3D CT images

Segmentation and landmarking of computed tomographic (CT) images of pediatric patients are important and useful in computer-aided diagnosis (CAD), treatment planning, and objective analysis of normal as well as pathological regions. Identification and segmentation of organs and tissues in the presen...

Full description

Bibliographic Details
Main Author: Banik, Shantanu.
Other Authors: Rangayyan, Rangaraj M., Boag, Graham S.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.
Series:Synthesis lectures on biomedical engineering (Online), # 30.
Subjects:
Online Access:Abstract with links to full text
LEADER 07309nam a2200733 a 4500
001 3407
005 20090411123017.0
006 m e d
007 cr cn |||m|||a
008 090407s2009 caua fsab 001 0 eng d
020 # # |a 9781598292855 (electronic bk.) 
020 # # |a 9781598292848 (pbk.) 
024 7 # |a 10.2200/S00185ED1V01Y200903BME030  |2 doi 
035 # # |a (CaBNvSL)gtp00533834 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a RJ51.T65  |b B255 2009 
082 0 4 |a 618.9200757  |2 22 
100 1 # |a Banik, Shantanu. 
245 1 0 |a Landmarking and segmentation of 3D CT images  |c Shantanu Banik, Rangaraj M. Rangayyan, Graham S. Boag.  |h [electronic resource] / 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2009. 
300 # # |a 1 electronic text (xxi, 148 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on biomedical engineering,  |v # 30  |x 1930-0336 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on April 7, 2009). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 127-138) and index. 
505 0 # |a Introduction to medical image analysis -- Medical diagnostic imaging -- Imaging modalities -- Tissue characterization in CT images -- Computer-aided analysis of medical images -- Knowledge-based segmentation -- Atlas-based segmentation -- Landmarking of medical images -- Objectives and organization of the book -- Image segmentation -- Digital image processing -- Histogram -- Thresholding -- Region-based methods -- Region growing -- Region splitting and merging -- Edge-based techniques -- Active contour modeling -- Mathematical model of deformable contours -- Gradient vector flow -- The Hough transform -- The convex hull -- Fuzzy segmentation -- Fuzzy sets -- Fuzzy mapping -- Fuzzy connectivity -- Morphological image processing -- Binary morphological image processing -- Gray-scale morphological image processing -- Morphological reconstruction -- Segmentation using opening-by-reconstruction -- Remarks -- Experimental design and database -- Experimental design -- CT exams and dataset -- Methods of evaluation of the results -- Qualitative assessment -- Quantitative assessment -- Remarks -- Ribs, vertebral column, and spinal canal -- The vertebral column and the spinal canal -- Removal of peripheral artifacts and tissues -- Removal of the external air -- Removal of the skin -- Removal of the peripheral fat -- Removal of the peripheral muscle -- Identification of the rib structure -- Assessment of the results -- Segmentation of the vertebral column -- Qualitative evaluation of the results -- Quantitative evaluation of the results -- Identification of the spinal canal -- Delimitation of the search range for seed detection -- Detection of seed voxels using the Hough transform -- Extraction of the spinal canal -- Qualitative evaluation of the results -- Quantitative evaluation of the results -- Applications -- Remarks -- Delineation of the diaphragm -- The diaphragm -- Segmentation of the lungs -- Delineation of the diaphragm -- Linear least-squares procedure to model the diaphragm -- Active contour modeling of the diaphragm -- Qualitative assessment of the results -- Quantitative assessment of the results -- Applications -- Remarks -- Delineation of the pelvic girdle -- The pelvic girdle -- Delineation of the pelvic girdle -- Detection of seed voxels in the pelvic girdle -- Segmentation of the pelvic girdle -- Linear least-squares procedure to model the upper pelvic surface -- Active contour modeling of the upper pelvic surface -- Qualitative assessment of the results -- Quantitative assessment of the results -- Applications -- Remarks -- Application of landmarking -- Neuroblastoma -- Computer-aided analysis of neuroblastoma -- Segmentation of neuroblastic tumors -- Analysis of the results -- Qualitative analysis -- Quantitative analysis -- Remarks -- Concluding remarks -- Bibliography. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 3 # |a Segmentation and landmarking of computed tomographic (CT) images of pediatric patients are important and useful in computer-aided diagnosis (CAD), treatment planning, and objective analysis of normal as well as pathological regions. Identification and segmentation of organs and tissues in the presence of tumors are difficult. Automatic segmentation of the primary tumor mass in neuroblastoma could facilitate reproducible and objective analysis of the tumor's tissue composition, shape, and size. However, due to the heterogeneous tissue composition of the neuroblastic tumor, ranging from low-attenuation necrosis to high-attenuation calcification, segmentation of the tumor mass is a challenging problem. In this context, methods are described in this book for identification and segmentation of several abdominal and thoracic landmarks to assist in the segmentation of neuroblastic tumors in pediatric CT images. Methods to identify and segment automatically the peripheral artifacts and tissues, the rib structure, the vertebral column, the spinal canal, the diaphragm, and the pelvic surface are described. Techniques are also presented to evaluate quantitatively the results of segmentation of the vertebral column, the spinal canal, the diaphragm, and the pelvic girdle by comparing with the results of independent manual segmentation performed by a radiologist. The use of the landmarks and removal of several tissues and organs are shown to assist in limiting the scope of the tumor segmentation process to the abdomen, to lead to the reduction of the false-positive error, and to improve the result of segmentation of neuroblastic tumors. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Pediatric tomography. 
650 # 0 |a Abdomen  |x Tumors  |x Tomography. 
650 # 0 |a Neuroblastoma  |x Tomography. 
650 # 0 |a Diagnosis  |x Data processing. 
690 # # |a Medical image analysis 
690 # # |a Computed tomography (CT) 
690 # # |a Computer-aided diagnosis (CAD) 
690 # # |a Three-dimensional (3D) image processing 
690 # # |a Landmarking 
690 # # |a Image segmentation 
690 # # |a Atlas-based segmentation 
690 # # |a Tumor segmentation 
690 # # |a Fuzzy region growing 
690 # # |a Morphological image processing 
690 # # |a Opening-by-reconstruction 
690 # # |a Active contours 
690 # # |a Vertebral column 
690 # # |a Rib structure 
690 # # |a Spinal canal 
690 # # |a Diaphragm 
690 # # |a Pelvic girdle 
690 # # |a Neuroblastoma 
700 1 # |a Rangayyan, Rangaraj M. 
700 1 # |a Boag, Graham S. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on biomedical engineering (Online),  |v # 30.  |x 1930-0336 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00185ED1V01Y200903BME030  |3 Abstract with links to full text