Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure

This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a fullwave analysis which may be time consuming. The beauty of the generalized transmission line meth...

Full description

Bibliographic Details
Main Author: Wu, Xuan Hui.
Other Authors: Kishk, Ahmed A., Glisson, Allen W. 1951-
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2008.
Series:Synthesis lectures on antennas (Online) ; # 9.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 05370nam a2200625 a 4500
001 3375
005 20081216144051.0
006 m e d
007 cr cn |||m|||a
008 081203s2008 caua fsab 000 0 eng d
020 # # |a 9781598298147 (electronic bk.) 
020 # # |a 9781598298130 (pbk.) 
024 7 # |a 10.2200/S00156ED1V01Y200810ANT009  |2 doi 
035 # # |a 271225318 (OCLC) 
035 # # |a (CaBNvSL)gtp00532197 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a TK7871.6  |b W844 2008 
082 0 4 |a 621.3824  |2 22 
100 1 # |a Wu, Xuan Hui. 
245 1 0 |a Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure  |c Xuan Hui Wu, Ahmed A. Kishk, and Allen W. Glisson.  |h [electronic resource] / 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2008. 
300 # # |a 1 electronic text (ix, 86 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on antennas,  |v # 9  |x 1932-6084 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on December 3, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 83-84). 
505 0 # |a Introduction -- Antennas under a multilayer dielectric slab -- Introduction -- Radiation due to an electric dipole -- Evaluation of the horizontal component using chainmatrix -- Evaluation of the vertical component -- Field projection -- Evaluation of the horizontal component using S chain matrix -- Radiation due to a magnetic dipole -- Evaluation of the horizontal component using chainmatrix -- Evaluation of the vertical component -- Field projection -- Evaluation of the horizontal component using S chain matrix -- Results verification -- Applications -- Thin wire monopole antenna in a two-layer structure -- DRA in a four-layer structure -- Conclusions -- Antennas under a polarized multilayer structure -- Introduction -- Radiation due to an electric dipole -- Radiation due to a magnetic dipole -- Asymptotic boundary conditions -- PEC-type asymptotic boundary conditions -- PMC-type asymptotic boundary conditions -- Applications -- Cross polarization reduction -- Polarizer -- Discussion -- Conclusions -- Hertzian dipole model for an antenna -- Introduction -- Narrowband Hertzian dipole model -- Particle swarm optimization method -- PSO model for getting a narrowband dipole model -- Limitations of the narrowband model -- Wideband Hertzian dipole model -- PSO model for getting a wideband dipole model -- Modeling of a wideband antenna -- Application -- Rejection of Gaussian noise -- Frequency scalability -- Conclusions -- A derivation of equations in chapter 2 -- Derivation of equation (2.24) -- Derivation of equation (2.29) -- Derivation of equation (2.30) -- Maxima source code -- Maxima source code for a PEC-SI -- Maxima source code for a PMC-SI. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a fullwave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to a Hertzian dipole within a multilayer structure by solving an equivalent transmission line circuit. Since an antenna can be modeled as a set of Hertzian dipoles, the method could be used to predict the far-zone radiation of an antenna under a multilayer structure. The analytical expression for the far-zone field is derived for a structure with or without a polarizer. The procedure of obtaining the Hertzian dipole model that is required by the generalized transmission line method is also described. Several examples are given to demonstrate the capabilities, accuracy, and efficiency of this method. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Antennas (Electronics)  |x Mathematical models. 
650 # 0 |a Antenna radiation patterns. 
690 # # |a Transmission line. 
690 # # |a Antenna 
690 # # |a High directivity. 
690 # # |a Multilayer structure. 
690 # # |a Optimization. 
690 # # |a EBG. 
690 # # |a Hertzian dipole. 
690 # # |a Reciprocity. 
690 # # |a Asymptotic boundary conditions. 
690 # # |a Far-field radiation. 
690 # # |a Polarizer. 
700 1 # |a Kishk, Ahmed A. 
700 1 # |a Glisson, Allen W.  |d 1951-  |q (Allen Wilburn), 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on antennas (Online) ;  |v # 9. 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00156ED1V01Y200810ANT009  |z View fulltext via EzAccess