Statistics is easy!

Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to the data (typically, the normal distribution) and derive results under that assumption. Unfortunately, in real life, one cannot normally be sure of t...

Full description

Bibliographic Details
Main Author: Shasha, Dennis Elliott.
Other Authors: Wilson, Manda.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2008.
Series:Synthesis lectures on mathematics and statistics (Online) ; #1.
Subjects:
Online Access:Abstract with links to full text
LEADER 04225nam a2200481 a 4500
001 3351
005 20081107144254.0
006 m e d
007 cr cn |||m|||a
008 081015s2008 caua fsab 000 0 eng d
020 # # |a 9781598297782 (electronic bk.) 
020 # # |a 9781598297775 (pbk.) 
024 7 # |a 10.2200/S00142ED1V01Y200807MAS001  |2 doi 
035 # # |a 241487825 (OCLC) 
035 # # |a (CaBNvSL)gtp00531468 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QA278.8  |b .S527 2008 
082 0 4 |a 519.5  |2 22 
100 1 # |a Shasha, Dennis Elliott. 
245 1 0 |a Statistics is easy!  |c Dennis Shasha, Manda Wilson.  |h [electronic resource] / 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2008. 
300 # # |a 1 electronic text (vi, 70 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on mathematics and statistics ;  |v #1 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on October 15, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 69-70). 
505 0 # |a The basic idea -- Bias corrected confidence intervals -- Pragmatic considerations when using resampling -- Terminology -- The essential stats -- Mean -- Why and when -- Calculate -- Example -- Pseudocode & code -- Difference between two means -- Why and when -- Calculate -- Example -- Pseudocode & code -- Chi-squared -- Why and when -- Calculate with example -- Pseudocode & code -- Calculate with example for multiple variables -- Pseudocode & code -- Fisher S exact test -- Why and when -- Calculate with example -- Pseudocode & code -- One-way ANOVA -- Why and when -- Calculate with example -- Statistics is easy -- Pseudocode & code -- Multi-way ANOVA -- Why and when -- Calculate with example -- Pseudocode & code -- Linear regression -- Why and when -- Calculate with example -- Pseudocode & code -- Linear correlation -- Why and when -- Calculate & example -- Pseudocode & code -- Multiple regression -- Multiple testing -- Why and when -- Family wise error rate -- False discovery rate -- Case study: New Mexico's 2004 presidential ballots -- Take a close look at the data -- What questions do we want to ask -- How do we attempt to answer this question -- Next: effect of ethnicity for each machine type -- We have used the following techniques -- What did we find out? 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to the data (typically, the normal distribution) and derive results under that assumption. Unfortunately, in real life, one cannot normally be sure of the underlying distribution. For that reason, this book presents a distribution-independent approach to statistics based on a simple computational counting idea called resampling. This book explains the basic concepts of resampling, then systematically presents the standard statistical measures along with programs (in the language Python) to calculate them using resampling, and finally illustrates the use of the measures and programs in a case study. The text uses junior high school algebra and many examples to explain the concepts. The ideal reader has mastered at least elementary mathematics, likes to think procedurally, and is comfortable with computers. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
650 # 0 |a Nonparametric statistics. 
650 # 0 |a Resampling (Statistics) 
700 1 # |a Wilson, Manda. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on mathematics and statistics (Online) ;  |v #1. 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00142ED1V01Y200807MAS001  |3 Abstract with links to full text