Jordan canonical form application to differential equations /

Jordan Canonical Form ( JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of g...

Full description

Bibliographic Details
Main Author: Weintraub, Steven H.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2008.
Series:Synthesis lectures on mathematics and statistics (Online) ; #2.
Subjects:
Online Access:Abstract with links to full text
LEADER 03691nam a2200541 a 4500
001 3350
005 20081107144057.0
006 m e d
007 cr cn |||m|||a
008 081013s2008 caua fsa 001 0 eng d
020 # # |a 9781598298055 (electronic bk.) 
020 # # |a 9781598298048 (pbk.) 
024 7 # |a 10.2200/S00146ED1V01Y200808MAS002  |2 doi 
035 # # |a (CaBNvSL)gtp00531467 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QA371  |b .W455 2008 
082 0 4 |a 515.35  |2 22 
100 1 # |a Weintraub, Steven H. 
245 1 0 |a Jordan canonical form  |b application to differential equations /  |c Steven H. Weintraub.  |h [electronic resource] : 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2008. 
300 # # |a 1 electronic text (viii, 85 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on mathematics and statistics ;  |v #2 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on October 15, 2008). 
500 # # |a Series from website. 
500 # # |a Includes index. 
505 0 # |a Jordan canonical form -- The diagonalizable case -- The general case -- Solving systems of linear differential equations -- Homogeneous systems with constant coefficients -- Homogeneous systems with constant coefficients -- Inhomogeneous systems with constant coefficients -- The matrix exponential -- Background results -- A.1. Bases, coordinates, and matrices -- A.2. Properties of the complex exponential -- B. Answers to odd-numbered exercises. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a Jordan Canonical Form ( JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations-homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, a wealth of exercises for the reader). 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
650 # 0 |a Jordan matrix. 
650 # 0 |a Differential equations. 
690 # # |a Jordan Canonical Form. 
690 # # |a Linear algebra. 
690 # # |a Differential equations. 
690 # # |a Eigenvalues. 
690 # # |a Eigenvectors. 
690 # # |a Generalized eigenvectors. 
690 # # |a Matrix exponential. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on mathematics and statistics (Online) ;  |v #2. 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00146ED1V01Y200808MAS002  |3 Abstract with links to full text