Particle swarm optimization a physics-based approach /

This work aims to provide new introduction to the particle swarm optimization methods using a formal analogy with physical systems. By postulating that the swarm motion behaves similar to both classical and quantum particles, we establish a direct connection between what are usually assumed to be se...

Full description

Bibliographic Details
Main Author: Mikki, Said M.
Other Authors: Kishk, Ahmed A.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2008.
Series:Synthesis lectures on computational electromagnetics (Online), #20.
Subjects:
Online Access:Abstract with links to full text
LEADER 04786nam a2200565 a 4500
001 3343
005 20081106193220.0
006 m e d
007 cr cn |||m|||a
008 081019s2008 caua fsb 001 0 eng d
020 # # |a 1598296159 (electronic bk.) 
020 # # |a 9781598296150 (electronic bk.) 
020 # # |a 1598296140 (pbk.) 
020 # # |a 9781598296143 (pbk.) 
024 7 # |a 10.2200/S00110ED1V01Y200804CEM020  |2 doi 
035 # # |a (OCoLC)231628508 
035 # # |a (CaBNvSL)gtp00531432 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QC20.7.M27  |b .M546 2008 
082 0 4 |a 539.7/2  |2 22 
100 1 # |a Mikki, Said M. 
245 1 0 |a Particle swarm optimization  |b a physics-based approach /  |c Said M. Mikki and Ahmed A. Kishk.  |h [electronic resource] : 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2008. 
300 # # |a 1 electronic text (x, 93 p. : ill. (some col.)) :  |b digital file. 
490 1 # |a Synthesis lectures on computational electromagnetics,  |v #20  |x 1932-1716 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed Oct. 19, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 79-84) and index. 
505 0 # |a Contents -- Preface -- 1. Introduction -- 1.1. What is optimization? -- 1.2. Why physics-based approach -- 1.3. The philosophy of the book -- 2. The classical particle swarm optimization method -- 2.1. Definition of the PSO algorithm -- 2.2. Particle swarm optimization and electromagnetics -- 3. Physical formalism for particle swarm optimization -- 3.1. Introduction -- 3.2. Molecular dynamics formulation -- 3.3. Extraction of information from swarm dynamics -- 3.4. Thermodynamic analysis of the PSO environment -- 3.5. Acceleration technique for the PSO algorithm -- 3.6. Diffusion model for the PSO algorithm -- 3.7. Markov model for swarm optimization techniques -- 4. Boundary conditions for the PSO method -- 4.1. Introduction -- 4.2. The soft conditions -- 4.3. The hard boundary conditions -- 4.4. Comparative study of hard and soft boundary conditions -- 4.5. Hybrid periodic boundary condition for the PSO environment -- 5. The quantum particle swarm optimization -- 5.1. Quantum formulation of the swarm dynamics -- 5.2. The choice of the potential well distribution -- 5.3. The collapse of the wave function -- 5.4. Selecting the parameters of the algorithm -- 5.5. The QPSO algorithm -- 5.6. Application of the QPSO to array antenna synthesis problems -- 5.7. Infinitesimal dipoles equivalent to practical antennas -- 5.8. Conclusion -- Bibliography -- Index. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a This work aims to provide new introduction to the particle swarm optimization methods using a formal analogy with physical systems. By postulating that the swarm motion behaves similar to both classical and quantum particles, we establish a direct connection between what are usually assumed to be separate fields of study, optimization and physics. Within this framework, it becomes quite natural to derive the recently introduced quantum PSO algorithm from the Hamiltonian or the Lagrangian of the dynamical system. The physical theory of the PSO is used to suggest some improvements in the algorithm itself, like temperature acceleration techniques and the periodic boundary condition. At the end, we provide a panorama of applications demonstrating the power of the PSO, classical and quantum, in handling difficult engineering problems. The goal of this work is to provide a general multi-disciplinary view on various topics in physics, mathematics, and engineering by illustrating their interdependence within the unified framework of the swarm dynamics. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat reader. 
650 # 0 |a Mathematical optimization. 
690 # # |a Particle swarm optimization. 
690 # # |a Swarm dynamics. 
690 # # |a Computational electromagnetics. 
690 # # |a Evolutionary computing. 
690 # # |a Artificial intelligence. 
690 # # |a Optimization algorithm. 
700 1 # |a Kishk, Ahmed A. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on computational electromagnetics (Online),  |v #20.  |x 1932-1716 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00110ED1V01Y200804CEM020  |3 Abstract with links to full text