Integral equation methods for electromagnetic and elastic waves

Integral equation methods for electromagnetic and elastic waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians....

Full description

Bibliographic Details
Main Author: Chew, Weng Cho.
Other Authors: Hu, Bin, 1972-, Tong, Mei Song.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009.
Edition:1st ed.
Series:Synthesis lectures on computational electromagnetics (Online), #12.
Subjects:
Online Access:Abstract with links to full text
LEADER 06939nam a2200649 a 4500
001 3340
005 20081106172114.0
006 m e d
007 cr cn |||m|||a
008 081019s2009 caua fsb 001 0 eng d
020 # # |a 1598291491 (electronic bk.) 
020 # # |a 9781598291490 (electronic bk.) 
020 # # |a 1598291483 (pbk.) 
020 # # |a 9781598291483 (pbk.) 
024 7 # |a 10.2200/S00102ED1V01Y200807CEM012  |2 doi 
035 # # |a (OCoLC)247031726 
035 # # |a (CaBNvSL)gtp00531424 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QC661  |b .C48 2008 
082 0 4 |a 537/.125  |2 20 
100 1 # |a Chew, Weng Cho. 
245 1 0 |a Integral equation methods for electromagnetic and elastic waves  |c Weng Cho Chew, Mei Song Tong, Bin Hu.  |h [electronic resource] / 
250 # # |a 1st ed. 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2009. 
300 # # |a 1 electronic text (xv, 241 p. : ill. (some col.)) :  |b digital file. 
490 1 # |a Synthesis lectures on computational electromagnetics,  |v #12  |x 1932-1716 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed Oct. 19, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references and index. 
505 0 # |a Preface -- Acknowledgements -- 1. Introduction to computational electromagnetics -- 1.1. Mathematical modeling--a historical perspective -- 1.2. Some things do not happen in CEM frequently--nonlinearity -- 1.3. The morphing of electromagnetic physics -- 1.4. Matched asymptotics -- 1.5. Why CEM? -- 1.6. Time domain versus frequency domain -- 1.7. Differential equation versus integral equation -- 1.8. Nondissipative nature of electromagnetic field -- 1.9. Conclusions -- 2. Linear vector space, reciprocity, and energy conservation -- 2.1. Introduction -- 2.2. Linear vector spaces -- 2.3. Inner products for electromagnetics -- 2.4. Transpose and adjoint of an operator -- 2.5. Matrix representation -- 2.6. Compact versus noncompact operators -- 2.7. Extension of Bra and Ket notations -- 2.8. Orthogonal basis versus nonorthogonal basis -- 2.9. Integration by parts -- 2.10. Reciprocity theorem--a new look -- 2.11. Energy conservation theorem--a new look -- 2.12. Conclusions -- 3. Introduction to integral equations -- 3.1. Introduction -- 3.2. The dyadic Green's function -- 3.3. Equivalence principle and extinction theorem -- 3.4. Electric field integral equation--a simple physical description -- 3.5. Understanding the method of moments--a simple example -- 3.6. Choice of expansion function -- 3.7. Closed surface versus open surface -- 3.8. Internal resonance and combined field integral equation -- 3.9. Other boundary conditions--impedance boundary condition, thin dielectric sheet, and r-card -- 3.10. Matrix solvers--a pedestrian introduction -- 3.11. Conclusions -- 4. Integral equations for penetrable objects -- 4.1. Introduction -- 4.2. Scattering by a penetrable object using SIE -- 4.3. Gedanken experiments for internal resonance problems -- 4.4. Volume integral equations -- 4.5. Curl conforming versus divergence conforming expansion functions -- 4.6. Thin dielectric sheet -- 4.7. Impedance boundary condition -- 4.8. Conclusions -- 5. Low-frequency problems in integral equations -- 5.1. Introduction -- 5.2. Low-frequency breakdown of electric field integral equation -- 5.3. Remedy--loop-tree decomposition and frequency normalization -- 5.4. Testing of the incident field with the loop function -- 5.5. The multi-dielectric-region problem -- 5.6. Multiscale problems in electromagnetics -- 5.7. Conclusions -- 6. Dyadic Green's function for layered media and integral equations -- 6.1. Introduction -- 6.2. Dyadic Green's function for layered media -- 6.3. Matrix representation -- 6.4. The [delta]Ge operator -- 6.5. The [lambda] and [kappa] operators -- 6.6. The Ez-Hz formulation -- 6.7. Validation and result -- 6.8. Conclusions -- 7. Fast inhomogeneous plane wave algorithm for layered media -- 7.1. Introduction -- 7.2. Integral equations for layered medium -- 7.3. FIPWA for free space -- 7.4. FIPWA for layered medium -- 7.5. Numerical results -- 7.6. Conclusions -- 8. Electromagnetic wave versus elastic wave -- 8.1. Introduction -- 8.2. Derivation of the elastic wave equation -- 8.3. Solution of the elastic wave equation--a succinct derivation -- 8.4. Alternative solution of the elastic wave equation via Fourier-Laplace transform -- 8.5. Boundary conditions for elastic wave equation -- 8.6. Decomposition of elastic wave into SH, SV and P waves for layered media -- 8.7. Elastic wave equation for planar layered media -- 8.8. Finite difference scheme for the elastic wave equation -- 8.9. Integral equation for elastic wave scattering -- 8.10. Conclusions -- Glossary of acronyms -- About the authors. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a Integral equation methods for electromagnetic and elastic waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
650 # 0 |a Elastic waves  |x Mathematics. 
650 # 0 |a Electromagnetic waves  |x Mathematics. 
650 # 0 |a Integral equations  |x Numerical solutions. 
690 # # |a Integral equations. 
690 # # |a Computational electromagnetics. 
690 # # |a Electromagnetic waves. 
690 # # |a Linear vector spaces. 
690 # # |a Energy conservation theorem. 
690 # # |a Low-frequency problems. 
690 # # |a Dyadic Green's function. 
690 # # |a Fast inhomogeneous plane wave algorithm. 
690 # # |a Elastic waves. 
700 1 # |a Hu, Bin,  |d 1972- 
700 1 # |a Tong, Mei Song. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on computational electromagnetics (Online),  |v #12.  |x 1932-1716 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00102ED1V01Y200807CEM012  |3 Abstract with links to full text