PSpice for digital communications engineering

PSpice for Digital Communications Engineering shows how to simulate digital communication systems and modulation methods using the very powerful Cadence Orcad PSpice version 10.5 suite of software programs. Fourier series and Fourier transform are applied to signals to set the ground work for the mo...

Full description

Bibliographic Details
Main Author: Tobin, Paul, 1948-
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2007.
Edition:1st ed.
Series:Synthesis lectures on digital circuits and systems (Online) ; #10.
Subjects:
Online Access:Abstract with links to full text
LEADER 07722nam a2200649 a 4500
001 3287
005 20081107141133.0
006 m e d
007 cr cn |||m|||a
008 081013s2007 caua fsab 001 0 eng d
020 # # |a 1598291637 (electronic bk.) 
020 # # |a 9781598291636 (electronic bk.) 
020 # # |a 1598291629 (pbk.) 
020 # # |a 9781598291629 (pbk.) 
024 7 # |a 10.2200/S00072ED1V01Y200612DCS010  |2 doi 
035 # # |a 86085073 (OCLC) 
035 # # |a (CaBNvSL)gtp00531456 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a TK5103.7  |b .T636 2007 
082 0 4 |a 621.382  |2 22 
100 1 # |a Tobin, Paul,  |d 1948- 
245 1 0 |a PSpice for digital communications engineering  |c Paul Tobin.  |h [electronic resource] / 
250 # # |a 1st ed. 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2007. 
300 # # |a 1 electronic text (xiii, 199 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on digital circuits and systems,  |v #10  |x 1932-3174 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on October 13, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 189) and index. 
505 0 # |a Fourier analysis, signals, and bandwidth -- Digital signals -- Bandwidth -- Pulse spectra for different pulse widths and period -- Average and RMS pulse power -- Unsynchronizing probe-plot axis -- Fourier transform -- Fourier series analysis -- The vector part -- Exercise -- Baseband transmission techniques -- Baseband signals -- Baseband signal formats -- Non-return to zero (NRZ) coding -- FileStim generator -- NRZ-B -- RZ encoding and decoding -- RZ to NRZ decoder -- Manchester encoding and decoding -- Manchester unipolar to bipolar encoding -- Manchester (biphase) decoding -- Differential Manchester coding -- Alternate mark inversion encoding -- AMI decoding -- DUO-binary baseband signaling -- Use of a precoder in duo-binary signaling -- Integrate and dump matched filter baseband receiver -- Sampling and pulse code modulation -- Single-channel pulse code modulation -- Companding characteristics -- Sampling -- Sallen and key antialiasing active filter -- Speech signals -- Sample and hold -- Quantization noise -- Analog to digital conversion -- DAC resolution -- Band-stop filter -- Pulse code modulation -- Universal shift register -- 74194 universal shift register -- Single-channel 4-bit PCM transmitter -- Time-division multiplexing and demultiplexing -- Time-division multiplexing of two PAM signals -- Linear delta modulation -- Delta demodulation -- Exercises -- Passband transmission techniques -- Baseband to passband -- Amplitude shift keying -- Frequency shift keying -- Frequency shift keying spectrum -- FSK receiver -- Infinite gain multiple feedback active filter -- Phase shift keying -- PSK receiver -- Differential phase shift keying (DPSK) -- Differential phase shift receiver -- Exercises -- Multilevel signaling and bandwidth efficiency -- Channel capacity -- Multilevel encoding: bandwidth efficiency -- Bit error rate -- Quadrature phase shift keying -- QPSK modulation using ABM parts -- QPSK modulation using a bit-splitter -- QPSK receiver -- Offset quadrature phase shift keying -- Gaussian minimum shift keying -- Eight-PSK -- Quadrature amplitude Modulation -- Eight-QAM -- Comparison of PSK and QAM -- Sixteen-quadrature amplitude modulation -- Two-to-four level conversion -- Clock extraction -- Costas loop -- Exercises -- System performance and test instruments -- Noise generator -- Eye diagram -- The eye meter -- Eye diagram application -- Vector/scatter diagram -- Noisy QPSK scatter diagram -- Noisy 16-QAM scatter diagram -- Clock with Jitter -- Intersymbol interference -- Nyquist signal criterion -- Raised cosine filter -- Square root-raised cosine filter -- Raised cosine filter response -- Transmitter and receiver filter impulse response -- Example -- Solution -- Errors, noise, and matched filters -- Importing noise into a schematic -- Gaussian noise distribution plot using a macro -- Example -- Bit error rate (BER) -- Channel capacity -- Channel capacity for different M-ary levels -- BER performance for a range of Eb/N0 ratios -- Cyclic redundancy check -- Exercises -- Direct sequence spread spectrum systems -- Spread spectrum -- Pseudorandom binary sequence properties -- PRBS generator -- Vector part -- PRBS applications -- Direct sequence spread spectrum transmitter -- STIM generator part -- DSSS transmitter -- Spread spectrum receiver -- Adding noise to the received signal -- Frequency-hopping spread spectrum -- Multiplexer -- PRBS -- Exercise. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a PSpice for Digital Communications Engineering shows how to simulate digital communication systems and modulation methods using the very powerful Cadence Orcad PSpice version 10.5 suite of software programs. Fourier series and Fourier transform are applied to signals to set the ground work for the modulation techniques introduced in later chapters. Various baseband signals, including duo-binary baseband signaling, are generated and the spectra are examined to detail the unsuitability of these signals for accessing the public switched network. Pulse code modulation and time-division multiplexing circuits are examined and simulated where sampling and quantization noise topics are discussed. We construct a single-channel PCM system from transmission to receiver i.e. end-to-end, and import real speech signals to examine the problems associated with aliasing, sample and hold. Companding is addressed here and we look at the A and mu law characteristics for achieving better signal to quantization noise ratios. Several types of delta modulators are examined and also the concept of time division multiplexing is considered. Multi-level signaling techniques such as QPSK and QAM are analyzed and simulated and 'home-made meters', such as scatter and eye meters, are used to assess the performance of these modulation systems in the presence of noise. The raised-cosine family of filters for shaping data before transmission is examined in depth where bandwidth efficiency and channel capacity is discussed. We plot several graphs in Probe to compare the efficiency of these systems. Direct spread spectrum is the last topic to be examined and simulated to show the advantages of spreading the signal over a wide bandwidth and giving good signal security at the same time. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
630 0 0 |a PSpice. 
650 # 0 |a Digital communications  |x Computer simulation. 
690 # # |a Fourier series and Fourier transforms. 
690 # # |a Baseband and passband modulation. 
690 # # |a Pulse code modulation. 
690 # # |a Time-division multiplexing. 
690 # # |a Quantization noise. 
690 # # |a M-ary signaling. 
690 # # |a QPSK. 
690 # # |a QAM. 
690 # # |a Eyemeter. 
690 # # |a Scatter diagrams. 
690 # # |a Spread spectrum. 
690 # # |a Raised cosine filter. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on digital circuits and systems (Online) ;  |v #10. 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00072ED1V01Y200612DCS010  |3 Abstract with links to full text