Support vector machines for antenna array processing and electromagnetics

Support vector machines (SVM) were introduced in the early 90's as a novel nonlinear solution for classification and regression tasks. These techniques have been proved to have superior performances in a large variety of real world applications due to their generalization abilities and robustne...

Full description

Bibliographic Details
Main Author: Martínez-Ramón, Manel, 1968-
Other Authors: Christodoulou, Christos G.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2006.
Edition:1st ed.
Series:Synthesis lectures on computational electromagnetics (Online), #5.
Subjects:
Online Access:Abstract with links to full text
LEADER 04179nam a2200625 a 4500
001 3267
005 20081106193715.0
006 m e d
007 cr bn |||m|||a
008 081019s2006 caua fsb 001 0 eng d
020 # # |a 1598290258 (electronic bk.) 
020 # # |a 9781598290257 (electronic bk.) 
020 # # |a 159829024X (pbk.) 
020 # # |a 9781598290240 (pbk.) 
024 7 # |a 10.2200/S00020ED1V01Y200604CEM005  |2 doi 
035 # # |a (OCoLC)71846648 
035 # # |a (CaBNvSL)gtp00531435 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a TK7871.6  |b .M277 2006 
082 0 4 |a 621.3824  |2 22 
100 1 # |a Martínez-Ramón, Manel,  |d 1968- 
245 1 0 |a Support vector machines for antenna array processing and electromagnetics  |c Manel Martínez-Ramón, Christos Christodoulou.  |h [electronic resource] / 
250 # # |a 1st ed. 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2006. 
300 # # |a 1 electronic text (ix, 110 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on computational electromagnetics,  |v #5  |x 1932-1716 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed on Oct. 19, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 103-108) and index. 
505 0 # |a 1. Introduction -- 1.1. Motivation of this book -- 1.2. Learning machines and generalization -- 1.3. Organization of this book -- 2. Linear support vector machines -- 2.1. An intuitive explanation of the support vector classifier -- 2.2. An intuitive explanation of the support vector regressor -- 3. Nonlinear support vector machines -- 3.1. The Kernel trick -- 3.2. Construction of a nonlinear SVC -- 3.3. Construction of a nonlinear SVR -- 4. Advanced topics -- 4.1. Support vector machines in the complex plane -- 4.2. Linear support vector ARx -- 4.3. Robust cost function of support vector regressors -- 4.4. Parameter selection -- 5. Support vector machines for beamforming -- 5.1. Problem statement -- 5.2. Linear SVM beamformer with temporal reference -- 5.3. Linear SVM beamformer with spatial reference -- 5.4. Nonlinear parameter estimation of linear beamformers -- 5.5. Nonlinear SVM beamformer with temporal reference -- 5.6. Nonlinear SVM beamformer with spatial reference -- 6. Determination of angle of arrival -- 6.1. Linear SVM AOA estimator using regression -- 6.2. Nonlinear AOA estimators -- 6.3. Nonlinear SVM estimator using multiclass classification -- 7. Other applications in electromagnetics -- 7.1. Buried object detection -- 7.2. Sidelobe control -- 7.3. Intelligent alignment of waveguide filters. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a Support vector machines (SVM) were introduced in the early 90's as a novel nonlinear solution for classification and regression tasks. These techniques have been proved to have superior performances in a large variety of real world applications due to their generalization abilities and robustness against noise and interferences. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
650 # 0 |a Antenna arrays. 
650 # 0 |a Electromagnetism. 
650 # 0 |a Machine learning. 
650 # 0 |a Multivariate analysis. 
650 # 0 |a Signal processing  |x Statistical methods. 
690 # # |a Support vector machines. 
690 # # |a Beamforming. 
690 # # |a Angle of arrival. 
690 # # |a Electromagnetics. 
690 # # |a Antenna arrays. 
700 1 # |a Christodoulou, Christos G. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on computational electromagnetics (Online),  |v #5.  |x 1932-1716 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00020ED1V01Y200604CEM005  |3 Abstract with links to full text