Perfectly matched layer (PML) for computational electromagnetics

This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC) used to simulate free space when solving the Maxwell equations with such finite methods as the finite difference time domain (FDTD) method or the finite element method. The frequency domain and the time domain...

Full description

Bibliographic Details
Main Author: Bérenger, Jean-Pierre.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2007.
Edition:1st ed.
Series:Synthesis lectures on computational electromagnetics (Online), #8.
Subjects:
Online Access:Abstract with links to full text
LEADER 06182nam a2200673 a 4500
001 3266
005 20081106193413.0
006 m e d
007 cr bn |||m|||a
008 081019s2007 caua fsb 000 0 eng d
020 # # |a 1598290835 (electronic bk.) 
020 # # |a 9781598290837 (electronic bk.) 
020 # # |a 1598290827 (pbk.) 
020 # # |a 9781598290820 (pbk.) 
024 7 # |a 10.2200/S00030ED1V01Y200605CEM008  |2 doi 
035 # # |a (OCoLC)83600873 
035 # # |a (CaBNvSL)gtp00531433 
040 # # |a CaBNvSL  |c CaBNvSL  |d CaBNvSL 
050 # 4 |a QC670  |b .B47 2007 
082 0 4 |a 530.141  |2 22 
100 1 # |a Bérenger, Jean-Pierre. 
245 1 0 |a Perfectly matched layer (PML) for computational electromagnetics  |c Jean-Pierre Bérenger.  |h [electronic resource] / 
246 3 # |a Perfectly matched layer for computational electromagnetics. 
246 3 0 |a PML for computational electromagnetics. 
250 # # |a 1st ed. 
260 # # |a San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :  |b Morgan & Claypool Publishers,  |c c2007. 
300 # # |a 1 electronic text (vii, 117 p. : ill.) :  |b digital file. 
490 1 # |a Synthesis lectures on computational electromagnetics,  |v #8  |x 1932-1716 ; 
500 # # |a Part of: Synthesis digital library of engineering and computer science. 
500 # # |a Title from PDF t.p. (viewed Oct. 19, 2008). 
500 # # |a Series from website. 
504 # # |a Includes bibliographical references (p. 111-116). 
505 0 # |a Introduction -- 1. The requirements for the simulation of free space and a review of existing absorbing boundary conditions -- 1.1. The Maxwell equations and the boundary conditions -- 1.2. The actual problems to be solved with numerical methods -- 1.3. The requirements to be satisfied by the absorbing boundary conditions -- 1.4. The existing ABCs before the introduction of the PML ABC -- 2. The two-dimensional perfectly matched layer -- 2.1. A medium without reflection at normal and grazing incidences -- 2.2. The PML medium in the 2D TE case -- 2.3. Reflection of waves from a vacuum-PML interface and from a PML-PML interface -- 2.4. The perfectly matched layer absorbing boundary condition -- 2.5. Evanescent waves in PML media -- 3. Generalizations and interpretations of the perfectly matched layer -- 3.1. The three-dimensional PML matched to a vacuum -- 3.2. The three-dimensional PML absorbing boundary condition -- 3.3. Interpretation of the PML medium in terms of stretched coordinates -- 3.4. Interpretation in terms of dependent currents -- 3.5. The PML matched to general media -- 3.6. The PML matched to nonhomogeneous media -- 3.7. The uniaxial PML medium -- 3.8. The complex frequency shifted PML -- 4. Time domain equations for the PML medium -- 4.1. Time domain PML matched to a vacuum -- 4.2. Time domain PML for lossy media -- 4.3. Time domain PML for anisotropic media -- 4.4. Time domain PML for dispersive media -- 5. The PML ABC for the FDTD method -- 5.1. FDTD schemes for the PML matched to a vacuum -- 5.2. FDTD schemes for PMLs matched to lossy isotropic media -- 5.3. FDTD schemes for PMLs matched to anisotropic media -- 5.4. FDTD schemes for PMLs matched to dispersive media -- 5.5. Profiles of conductivity in the PML ABC -- 5.6. The PML ABC in the discretized FDTD space -- 6. Optmization of the PML ABC in wave-structure interaction and waveguide problems -- 6.1. Wave-structure interaction problems -- 6.2. Waveguide problems -- 6.3. Concluding remarks to the application of the PML ABC to FDTD problems -- 7. Some extensions of the PML ABC -- 7.1. The perfectly matched layer in other systems of coordinates -- 7.2. The perfectly matched layer with other numerical techniques -- 7.3. Use of the perfectly matched layer with other equations of physics -- Bibliography -- Author biography. 
506 # # |a Abstract freely available; full-text restricted to subscribers or individual document purchasers. 
510 0 # |a Compendex 
510 0 # |a INSPEC 
510 0 # |a Google scholar 
510 0 # |a Google book search 
520 # # |a This lecture presents the perfectly matched layer (PML) absorbing boundary condition (ABC) used to simulate free space when solving the Maxwell equations with such finite methods as the finite difference time domain (FDTD) method or the finite element method. The frequency domain and the time domain equations are derived for the different forms of PML media, namely the split PML, the CPML, the NPML, and the uniaxial PML, in the cases of PMLs matched to isotropic, anisotropic, and dispersive media. The implementation of the PML ABC in the FDTD method is presented in detail. Propagation and reflection of waves in the discretized FDTD space are derived and discussed, with a special emphasis on the problem of evanescent waves. The optimization of the PML ABC is addressed in two typical applications of the FDTD method: first, wave-structure interaction problems, and secondly, waveguide problems. Finally, a review of the literature on the application of the PML ABC to other numerical techniques of electromagnetics and to other partial differential equations of physics is provided. In addition, a software package for computing the actual reflection from a FDTD-PML is provided. 
530 # # |a Also available in print. 
538 # # |a Mode of access: World Wide Web. 
538 # # |a System requirements: Adobe Acrobat Reader. 
650 # 0 |a Finite differences. 
650 # 0 |a Maxwell equations  |x Numerical solutions. 
650 # 0 |a Time-domain analysis. 
690 # # |a Absorbing boundary conditions. 
690 # # |a Perfectly matched layer. 
690 # # |a Numerical method. 
690 # # |a Finite difference. 
690 # # |a Finite element. 
690 # # |a Free space. 
690 # # |a Stretched coordinate. 
690 # # |a Discretized space. 
690 # # |a Evanescent wave. 
690 # # |a FDTD. 
690 # # |a PML. 
730 0 # |a Synthesis digital library of engineering and computer science. 
830 # 0 |a Synthesis lectures on computational electromagnetics (Online),  |v #8.  |x 1932-1716 ; 
856 4 2 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2200/S00030ED1V01Y200605CEM008  |3 Abstract with links to full text