Electromagnetic scattering using the iterative multiregion technique

In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve eac...

Full description

Bibliographic Details
Main Author: Sharkawy, Mohamed Hassan Al, 1978-
Other Authors: Demir, Veysel, 1974-, Elsherbeni, Atef Z.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2007.
Series:Synthesis lectures on computational electromagnetics (Online), #19.
Subjects:
Online Access:View fulltext via EzAccess
Table of Contents:
  • 1. Introduction
  • 2. Basics of the FDFD method
  • 2.1. FDFD method
  • 2.2. The Yee cell
  • 2.3. 3D FDFD formulation
  • 2.4. PML absorbing boundary
  • 3. IMR technique for large-scale electromagnetic scattering problems : 3D case
  • 3.1. Iterative procedure between multiple domains
  • 3.2. Speeding up techniques
  • 3.3. Numerical results
  • 4. IMR technique for large-scale electromagnetic scattering problems : 2D case
  • 4.1. 2D FDFD formulation
  • 4.2. PML absorbing boundary
  • 4.3. Numerical results
  • 5. The IMR algorithm using a hybrid FDFD and method of moments techniques
  • 5.1. A 2D TMz EFIE-MoM formulation for PEC cylinders
  • 5.2. Hybrid FDFD/MoM technique
  • 5.3. Numerical results
  • 6. Parallelization of the iterative multiregion technique
  • 6.1. Introduction to parallel computing
  • 6.2. Communication task
  • 6.3. Hybrid IMR-parallel processing technique
  • 6.4. Numerical results
  • 7. Combined multigrid technique and IMR algorithm
  • 7.1. Introduction to multigrid technique
  • 7.2. Multigrid v-cycle on a grid hierarchy
  • 7.3. Multigrid algorithm
  • 7.4. Preconditioning
  • 7.5. Numerical results
  • 8. Concluding remarks
  • Appendices
  • Radiation and scattering equations
  • A.1. Near field 2D formulation
  • A.2. Far field 2D formulation
  • Bibliography
  • Author biography.