Adaptive mesh refinement for time-domain numerical electromagnetics

This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies...

Full description

Bibliographic Details
Main Author: Sarris, Costas D.
Format: Electronic
Language:English
Published: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2007.
Edition:1st ed.
Series:Synthesis lectures on computational electromagnetics (Online), #11.
Subjects:
Online Access:View fulltext via EzAccess
Table of Contents:
  • 1. Introduction
  • 2. A numerical interface between FDTD and Haar MRTD : formulation and applications
  • 2.1. Introduction
  • 2.2. Multiresolution analysis : a brief overview
  • 2.3. Derivation of time-domain schemes by the method of moments
  • 2.4. Two-dimensional hybrid arbitrary-order Haar MRTD/FDTD scheme : formulation
  • 2.5. Numerical results : validation
  • 2.6. Numerical results : applications
  • 2.7. Conclusions
  • 3. Efficient implementation of adaptive mesh refinement in the Haar wavelet-based MRTD technique
  • 3.1. Introduction
  • 3.2. Wavelet-based front-tracking
  • 3.3. Adaptive Haar wavelet simulation of pulse compression in an optical fiber filter
  • 3.4. Conclusions
  • 4. The dynamically adaptive mesh refinement (AMR)-FDTD technique : theory
  • 4.1. Introduction
  • 4.2. AMR-FDTD : overview of the algorithm
  • 4.3. Mesh tree and field update procedure in AMR-FDTD
  • 4.4. Adaptive mesh refinement
  • 4.5. AMR-FDTD and MRTD : similarities and differences
  • 5. Dynamically adaptive mesh refinement in FDTD : microwave circuit applications
  • 5.1. Introduction
  • 5.2. Microstrip low-pass filter
  • 5.3. Microstrip branch coupler
  • 5.4. Microstrip spiral inductor
  • 5.5. Discussion : stability and accuracy of AMR-FDTD results
  • 5.6. Conclusion
  • 6. Dynamically adaptive mesh refinement in FDTD : optical applications and error estimates
  • 6.1. Multilevel AMR-FDTD
  • 6.2. Dielectric waveguide with a corrugated permittivity profile
  • 6.3. Dielectric waveguide power splitter
  • 6.4. Dielectric waveguide y-junction
  • 6.5. Dielectric ring resonator
  • 6.6. Numerical error estimation and control
  • 6.7. Conclusion.