Analysis of Multivariate and High-Dimensional Data /

'Big data' poses challenges that require both classical multivariate methods and contemporary techniques from machine learning and engineering. This modern text equips you for the new world - integrating the old and the new, fusing theory and practice and bridging the gap to statistical le...

Full description

Bibliographic Details
Main Author: Koch, Inge, (Author)
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2013.
Series:Cambridge Series in Statistical and Probabilistic Mathematics ; 32.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02409nam a22003498i 4500
001 28217
003 UkCbUP
005 20160413044025.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 110218s2013||||enk o ||1 0|eng|d
020 # # |a 9781139025805 (ebook) 
020 # # |z 9780521887939 (hardback) 
040 # # |a UkCbUP  |b eng  |c UkCbUP  |e rda 
050 0 0 |a QA278  |b .K5935 2014 
082 0 0 |a 519.5/35  |2 23 
100 1 # |a Koch, Inge,  |e author. 
245 1 0 |a Analysis of Multivariate and High-Dimensional Data /  |c Inge Koch. 
246 3 # |a Analysis of Multivariate & High-Dimensional Data 
264 # 1 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 # # |a 1 online resource (526 pages) :  |b digital, PDF file(s). 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
490 0 # |a Cambridge Series in Statistical and Probabilistic Mathematics ;  |v 32 
500 # # |a Title from publisher's bibliographic system (viewed on 13 Apr 2016). 
520 # # |a 'Big data' poses challenges that require both classical multivariate methods and contemporary techniques from machine learning and engineering. This modern text equips you for the new world - integrating the old and the new, fusing theory and practice and bridging the gap to statistical learning. The theoretical framework includes formal statements that set out clearly the guaranteed 'safe operating zone' for the methods and allow you to assess whether data is in the zone, or near enough. Extensive examples showcase the strengths and limitations of different methods with small classical data, data from medicine, biology, marketing and finance, high-dimensional data from bioinformatics, functional data from proteomics, and simulated data. High-dimension low-sample-size data gets special attention. Several data sets are revisited repeatedly to allow comparison of methods. Generous use of colour, algorithms, Matlab code, and problem sets complete the package. Suitable for master's/graduate students in statistics and researchers in data-rich disciplines. 
650 # 0 |a Multivariate analysis 
650 # 0 |a Big data 
776 0 8 |i Print version:  |z 9780521887939 
830 # 0 |a Cambridge Series in Statistical and Probabilistic Mathematics ;  |v 32. 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1017/CBO9781139025805  |z View fulltext via EzAccess