Gene Network Inference Verification of Methods for Systems Genetics Data /

This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaini...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Fuente, Alberto de la. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03122nam a22005175i 4500
001 24320
003 DE-He213
005 20151204150729.0
007 cr nn 008mamaa
008 140103s2013 gw | s |||| 0|eng d
020 # # |a 9783642451614  |9 978-3-642-45161-4 
024 7 # |a 10.1007/978-3-642-45161-4  |2 doi 
050 # 4 |a QH301-705 
072 # 7 |a PSA  |2 bicssc 
072 # 7 |a SCI086000  |2 bisacsh 
072 # 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 570  |2 23 
245 1 0 |a Gene Network Inference  |b Verification of Methods for Systems Genetics Data /  |c edited by Alberto de la Fuente.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 130 p. 49 illus., 33 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Simulation of the Benchmark Datasets -- A Panel of Learning Methods for the Reconstruction of Gene Regulatory Networks in a Systems Genetics Context -- Benchmarking a simple yet effective approach for inferring gene regulatory networks from systems genetics data -- Differential Equation based reverse-engineering algorithms: pros and cons -- Gene regulatory network inference from systems genetics data using tree-based methods -- Extending partially known networks -- Integration of genetic variation as external perturbation to reverse engineer regulatory networks from gene expression data -- Using Simulated Data to Evaluate Bayesian Network Approach for Integrating Diverse Data. 
520 # # |a This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians. 
650 # 0 |a Life sciences. 
650 # 0 |a Gene expression. 
650 # 0 |a Bioinformatics. 
650 # 0 |a Systems biology. 
650 # 0 |a Computational biology. 
650 # 0 |a Biological systems. 
650 1 4 |a Life Sciences. 
650 2 4 |a Systems Biology. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Biological Networks, Systems Biology. 
650 2 4 |a Computer Appl. in Life Sciences. 
650 2 4 |a Gene Expression. 
700 1 # |a Fuente, Alberto de la.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642451607 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-45161-4  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SBL 
950 # # |a Biomedical and Life Sciences (Springer-11642)