Computational and Robotic Models of the Hierarchical Organization of Behavior

Current robots and other artificial systems are typically able to accomplish only one single task. Overcoming this limitation requires the development of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Baldassarre, Gianluca. (Editor), Mirolli, Marco. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Subjects:
Online Access:View fulltext via EzAccess
LEADER 05175nam a22005655i 4500
001 24220
003 DE-He213
005 20151204153739.0
007 cr nn 008mamaa
008 131113s2013 gw | s |||| 0|eng d
020 # # |a 9783642398759  |9 978-3-642-39875-9 
024 7 # |a 10.1007/978-3-642-39875-9  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational and Robotic Models of the Hierarchical Organization of Behavior  |c edited by Gianluca Baldassarre, Marco Mirolli.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 # # |a VI, 358 p. 116 illus., 73 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Chap. 1 - Computational and Robotic Models of the Hierarchical Organization of Behavior: An Overview -- Chap. 2 - Behavioral Hierarchy: Exploration and Representation -- Chap. 3 - Self-organized Functional Hierarchy Through Multiple Timescales: Neurodynamical Accounts for Behavioral Compositionality -- Chap. 4 - Autonomous Representation Learning in a Developing Agent -- Chap. 5 - Hierarchies for Embodied Action Perception -- Chap. 6 - Learning and Coordinating Repertoires of Behaviors with Common Reward: Credit Assignment and Module Activation -- Chap. 7 - Modular, Multimodal Arm Control Models -- Chap. 8 - Generalization and Interference in Human Motor Control -- Chap. 9 - A Developmental Framework for Cumulative Learning Robots -- Chap. 10 - The Hierarchical Accumulation of Knowledge in the Distributed Adaptive Control Architecture -- Chap. 11 - The Hierarchical Organization of Cortical and Basal Ganglia Systems: A Computationally Informed Review and Integrated Hypothesis -- Chap. 12 - Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humans -- Chap. 13 - Neural Network Modelling of Hierarchical Motor Function in the Brain -- Chap. 14 - Restoring Purpose in Behavior. 
520 # # |a Current robots and other artificial systems are typically able to accomplish only one single task. Overcoming this limitation requires the development of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to require a modular and hierarchical organization. In this way, different modules can acquire different skills without catastrophic interference, and higher-level components of the system can solve complex tasks by exploiting the skills encapsulated in the lower-level modules. While machine learning and robotics recognize the fundamental importance of the hierarchical organization of behavior for building robots that scale up to solve complex tasks, research in psychology and neuroscience shows increasing evidence that modularity and hierarchy are pivotal organization principles of behavior and of the brain. They might even lead to the cumulative acquisition of an ever-increasing number of skills, which seems to be a characteristic of mammals, and humans in particular. This book is a comprehensive overview of the state of the art on the modeling of the hierarchical organization of behavior in animals, and on its exploitation in robot controllers. The book perspective is highly interdisciplinary, featuring models belonging to all relevant areas, including machine learning, robotics, neural networks, and computational modeling in psychology and neuroscience. The book chapters review the authors' most recent contributions to the investigation of hierarchical behavior, and highlight the open questions and most promising research directions. As the contributing authors are among the pioneers carrying out fundamental work on this topic, the book covers the most important and topical issues in the field from a computationally informed, theoretically oriented perspective. The book will be of benefit to academic and industrial researchers and graduate students in related disciplines. 
650 # 0 |a Computer science. 
650 # 0 |a Neurosciences. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Computational intelligence. 
650 # 0 |a Control engineering. 
650 # 0 |a Robotics. 
650 # 0 |a Mechatronics. 
650 # 0 |a Experiential research. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Neurosciences. 
650 2 4 |a Psychology Research. 
700 1 # |a Baldassarre, Gianluca.  |e editor. 
700 1 # |a Mirolli, Marco.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642398742 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-39875-9  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)