The Hardy Space H1 with Non-doubling Measures and Their Applications

The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of...

Full description

Bibliographic Details
Main Authors: Yang, Dachun. (Author), Yang, Dongyong. (Author), Hu, Guoen. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2013.
Series:Lecture Notes in Mathematics, 2084
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02932nam a22005175i 4500
001 24015
003 DE-He213
005 20140104040853.0
007 cr nn 008mamaa
008 140104s2013 gw | s |||| 0|eng d
020 # # |a 9783319008257  |9 978-3-319-00825-7 
024 7 # |a 10.1007/978-3-319-00825-7  |2 doi 
050 # 4 |a QA403.5-404.5 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 # |a Yang, Dachun.  |e author. 
245 1 4 |a The Hardy Space H1 with Non-doubling Measures and Their Applications  |c by Dachun Yang, Dongyong Yang, Guoen Hu.  |h [electronic resource] / 
264 # 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 # # |a XIII, 653 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2084  |x 0075-8434 ; 
505 0 # |a Preliminaries -- Approximations of the Identity -- The Hardy Space H1(μ) -- The Local Atomic Hardy Space h1(μ) -- Boundedness of Operators over (RD, μ) -- Littlewood-Paley Operators and Maximal Operators Related to Approximations of the Identity -- The Hardy Space H1 (Ï!, Ï&)and Its Dual Space RBMO (Ï!, Ï&) -- Boundedness of Operators over((Ï!, Ï&) -- Bibliography -- Index -- Abstract. 
520 # # |a The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail. 
650 # 0 |a Mathematics. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Functional analysis. 
650 # 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
700 1 # |a Yang, Dongyong.  |e author. 
700 1 # |a Hu, Guoen.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319008240 
830 # 0 |a Lecture Notes in Mathematics,  |v 2084  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-319-00825-7  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)