Henkin-Keisler Models

Henkin-Keisler models emanate from a modification of the Henkin construction introduced by Keisler to motivate the definition of ultraproducts. Keisler modified the Henkin construction at that point at which `new' individual constants are introduced and did so in a way that illuminates a connec...

Full description

Bibliographic Details
Main Author: Weaver, George. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston, MA : Springer US, 1997.
Series:Mathematics and Its Applications ; 392
Subjects:
Online Access:View fulltext via EzAccess
LEADER 02985nam a22004935i 4500
001 23582
003 DE-He213
005 20151204153841.0
007 cr nn 008mamaa
008 100301s1997 xxu| s |||| 0|eng d
020 # # |a 9780585288444  |9 978-0-585-28844-4 
024 7 # |a 10.1007/b102616  |2 doi 
050 # 4 |a QA8.9-10.3 
072 # 7 |a PBC  |2 bicssc 
072 # 7 |a PBCD  |2 bicssc 
072 # 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 # |a Weaver, George.  |e author. 
245 1 0 |a Henkin-Keisler Models  |c by George Weaver.  |h [electronic resource] / 
264 # 1 |a Boston, MA :  |b Springer US,  |c 1997. 
300 # # |a XII, 258 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Mathematics and Its Applications ;  |v 392 
505 0 # |a Keisler,s Specialization of the Method of Constants -- The Cardinality of Henkin-Keisler Models -- Classifying Maximal Extensions -- Elementary Subsystems of Henkin-Keisler Models I -- Elementary Subsystems of Henkin-Keisler Models II -- Small Models -- The Keisler-Shelah Isomorphism Theorems -- Saturated Models. 
520 # # |a Henkin-Keisler models emanate from a modification of the Henkin construction introduced by Keisler to motivate the definition of ultraproducts. Keisler modified the Henkin construction at that point at which `new' individual constants are introduced and did so in a way that illuminates a connection between Henkin-Keisler models and ultraproducts. The resulting construction can be viewed both as a specialization of the Henkin construction and as an alternative to the ultraproduct construction. These aspects of the Henkin-Keisler construction are utilized here to present a perspective on ultraproducts and their applications accessible to the reader familiar with Henkin's proof of the completeness of first order logic and naive set theory. This approach culminates in proofs of various forms of the Keisler-Shelah characterizations of elementary equivalence and elementary classes via Henkin-Keisler models. The presentation is self-contained and proofs of more advanced results from set theory are introduced as needed. Audience: Logicians in philosophy, computer science, linguistics and mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Logic. 
650 # 0 |a Computer science. 
650 # 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Logic. 
650 2 4 |a Computer Science, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780792343660 
830 # 0 |a Mathematics and Its Applications ;  |v 392 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b102616  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)