Introduction to Differential Manifolds

"This book contains essential material that every graduate student must know. Written with Serge Lang's inimitable wit and clarity, the volume introduces the reader to manifolds, differential forms, Darboux's theorem, Frobenius, and all the central features of the foundations of diffe...

Full description

Bibliographic Details
Main Author: Lang, Serge. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2002.
Edition:Second Edition.
Series:Universitext
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03430nam a22004935i 4500
001 23480
003 DE-He213
005 20151125021937.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 # # |a 9780387217727  |9 978-0-387-21772-7 
024 7 # |a 10.1007/b97450  |2 doi 
050 # 4 |a QA611-614.97 
072 # 7 |a PBP  |2 bicssc 
072 # 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 # |a Lang, Serge.  |e author. 
245 1 0 |a Introduction to Differential Manifolds  |c by Serge Lang.  |h [electronic resource] / 
250 # # |a Second Edition. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 # # |a XII, 250 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a Differential Calculus -- Manifolds -- Vector Bundles -- Vector Fields and Differential Equations -- Operations on Vector Fields and Differential Forms -- The Theorem of Frobenius -- Metrics -- Integration of Differential Forms -- StokesỚ" Theorem -- Applications of StokesỚ" Theorem. 
520 # # |a "This book contains essential material that every graduate student must know. Written with Serge Lang's inimitable wit and clarity, the volume introduces the reader to manifolds, differential forms, Darboux's theorem, Frobenius, and all the central features of the foundations of differential geometry. Lang lays the basis for further study in geometric analysis, and provides a solid resource in the techniques of differential topology. The book will have a key position on my shelf. Steven Krantz, Washington University in St. Louis "This is an elementary, finite dimensional version of the author's classic monograph, Introduction to Differentiable Manifolds (1962), which served as the standard reference for infinite dimensional manifolds. It provides a firm foundation for a beginner's entry into geometry, topology, and global analysis. The exposition is unencumbered by unnecessary formalism, notational or otherwise, which is a pitfall few writers of introductory texts of the subject manage to avoid. The author's hallmark characteristics of directness, conciseness, and structural clarity are everywhere in evidence. A nice touch is the inclusion of more advanced topics at the end of the book, including the computation of the top cohomology group of a manifold, a generalized divergence theorem of Gauss, and an elementary residue theorem of several complex variables. If getting to the main point of an argument or having the key ideas of a subject laid bare is important to you, then you would find the reading of this book a satisfying experience." Hung-Hsi Wu, University of California, Berkeley. 
650 # 0 |a Mathematics. 
650 # 0 |a Topology. 
650 # 0 |a Manifolds (Mathematics). 
650 # 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387954776 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97450  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)