Introduction to Applied Nonlinear Dynamical Systems and Chaos

This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative...

Full description

Bibliographic Details
Main Author: Wiggins, Stephen. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2003.
Edition:Second Edition.
Series:Texts in Applied Mathematics, 2
Subjects:
Online Access:View fulltext via EzAccess
LEADER 04650nam a22005535i 4500
001 23468
003 DE-He213
005 20151204154616.0
007 cr nn 008mamaa
008 100301s2003 xxu| s |||| 0|eng d
020 # # |a 9780387217499  |9 978-0-387-21749-9 
024 7 # |a 10.1007/b97481  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Wiggins, Stephen.  |e author. 
245 1 0 |a Introduction to Applied Nonlinear Dynamical Systems and Chaos  |c by Stephen Wiggins.  |h [electronic resource] / 
250 # # |a Second Edition. 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2003. 
300 # # |a XXXVIII, 844 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Texts in Applied Mathematics,  |v 2  |x 0939-2475 ; 
505 0 # |a Equilibrium Solutions, Stability, and Linearized Stability -- Liapunov Functions -- Invariant Manifolds: Linear and Nonlinear Systems -- Periodic Orbits -- Vector Fields Possessing an Integral -- Index Theory -- Some General Properties of Vector Fields: Existence, Uniqueness, Differentiability, and Flows -- Asymptotic Behavior -- The Poincaré-Bendixson Theorem -- Poincaré Maps -- Conjugacies of Maps, and Varying the Cross-Section -- Structural Stability, Genericity, and Transversality -- LagrangéƠ"s Equations -- Hamiltonian Vector Fields -- Gradient Vector Fields -- Reversible Dynamical Systems -- Asymptotically Autonomous Vector Fields -- Center Manifolds -- Normal Forms -- Bifurcation of Fixed Points of Vector Fields -- Bifurcations of Fixed Points of Maps -- On the Interpretation and Application of Bifurcation Diagrams: A Word of Caution -- The Smale Horseshoe -- Symbolic Dynamics -- The Conley-Moser Conditions, or ́ƠSHow to Prove That a Dynamical System is ChaotićƠý -- Dynamics Near Homoclinic Points of Two-Dimensional Maps -- Orbits Homoclinic to Hyperbolic Fixed Points in Three-Dimensional Autonomous Vector Fields -- Melnikov́Ơ s Method for Homoclinic Orbits in Two-Dimensional, Time-Periodic Vector Fields -- Liapunov Exponents -- Chaos and Strange Attractors -- Hyperbolic Invariant Sets: A Chaotic Saddle -- Long Period Sinks in Dissipative Systems and Elliptic Islands in Conservative Systems -- Global Bifurcations Arising from Local CodimensiońƠ Two Bifurcations -- Glossary of Frequently Used Terms. 
520 # # |a This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view. 
650 # 0 |a Mathematics. 
650 # 0 |a Dynamics. 
650 # 0 |a Ergodic theory. 
650 # 0 |a Applied mathematics. 
650 # 0 |a Engineering mathematics. 
650 # 0 |a Statistical physics. 
650 # 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387001777 
830 # 0 |a Texts in Applied Mathematics,  |v 2  |x 0939-2475 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b97481  |z View fulltext via EzAccess 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-BAE 
950 # # |a Mathematics and Statistics (Springer-11649)